
Assignment 6

CSE 447 and 517: Natural Language Processing - University of Washington

Winter 2022

Please consult the course website for current information on the due date, the late policy, and any data
you need to download for this assignment. This assignment is designed to advance your understanding of
sequence models. F problems are for CSE 517 students only. Other problems should be completed by
everyone.

Submit: You will submit two files: your writeup (a pdf) via Gradescope, and the decoded text from prob-
lem 1. Instructions can be found here.

Data: The data you need for this assignment is available at https://nasmith.github.io/NLP-winter22/
assets/data/A6.tgz.

1 Sequence Decoding

We provide to you two files:

• 15pctmasked.txt contains single sentences, one per line (i.e., newline characters delimit sen-
tences), each with some of its characters “masked”; characters are delimited by whitespace, masked
characters are replaced with “<mask>”, spaces are denoted “<s>”, and the end-of-sequence symbol
is “<eos>”

• lm.txt contains a bigram language model over characters; the format on each line is “a space b tab
p(b | a)” with special space and end-of-sequence characters denoted as above.

Your job is to decode the sentences, replacing each “masked” character with a character from the bigram
model’s vocabulary. For input x, your output y should be the sequence that maximizes p(y) under the
bigram language model, subject to the constraint that, for every position i where x is not masked, yi = xi.
(In plain English, we want you to find the most likely unmasked sequence consistent with the input, under
the model we gave you.) Hint: you should adapt the Viterbi algorithm to solve this problem exactly in
polynomial time and space.

Your output file should be in the same format as the input, but with every mask token replaced as de-
scribed above. Your writeup should explain how you generate a score for each possible choice and how you
recover the best sequence. You may use existing libraries and tools for this problem (be sure to acknowledge
them in your solution), but we do not expect they will be very helpful.

2 American National FSA – Eisenstein 9.3 (p. 213)

Construct (i.e., draw on the page; a TA recommends this tool) a finite-state automaton in the style of figures
9.2 and 9.3 (pp. 187–8), which handles the following examples:
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• nation/N, national/ADJ, nationalize/V, nationalizer/N

• America/N, American/ADJ, Americanize/V, Americanizer/N

Be sure that your FSA does not accept any further derivations, such as *nationalizeral and *Americanizern.

3 F Viterbi for Second-Order Models

At the end of the CRF lecture (slide 106), we proposed a second-order sequence model that defines scores
of triplets of labels, s(x, i, yi, yi+1, yi+2). The problem to be solved when we decode with this model is:

ŷ = argmax
y∈L`

`−1∑
i=0

s(x, i, yi, yi+1, yi+2) (1)

Note that there are ` terms in the sum. y0 (which is a special START label) appears only in the first term
(i = 0) and y`+1 (which is a special STOP label) appears only in the last term (i = `− 1). In a conventional
trigram-style model, we might also have “s(x,−1, y−1 = START, y0 = START, y1),” but including such a
term doesn’t add any expressive power to what is written above.

The Viterbi algorithm can be adapted for this model. The form of the algorithm is nearly identical to what
we saw in lecture. First, prefix scores are computed “left to right,” each using a formula with a local max,
and along with each prefix score we also store a backpointer that stores the “argmax.” Then the backpointers
are followed “right to left” to select a label for each word in turn. Here is most of the algorithm:
Input: scores s(x, i, y′′, y′, y), ∀i ∈ 〈0, . . . , `〉, ∀y′′ ∈ L, ∀y′ ∈ L, ∀y ∈ L

Output: ŷ

1. Base case: ♥2(y
′, y) = s(x, 0, START, y′, y)

(Note that the subscript in “♥2” refers to the last position in the triple, here, the word labeled “y,”
while the “0” argument to s refers to the first position in the triple.)

2. For i ∈ 〈3, . . . , `− 1〉:

• Solve for ♥i(∗, ∗) and bi(∗, ∗).

3. Special case for the end:

♥`(y
′, y) = s(x, `− 1, y′, y, STOP) + max

y′′∈L
s(x, `− 2, y′′, y′, y) +♥`−1(y

′′, y′)︸ ︷︷ ︸
b`(y

′, y) is the “argmax”

The above looks a little different from what you saw in lecture, where we calculated “♥`+1(STOP).”
Writing it as we’ve done here is just a slightly different choice that gives you a little more of a hint. To
see why, take a close look at slide 70.

4. (ŷ`−1, ŷ`)← argmax
y′,y∈L2

♥`(y
′, y)

5. For i ∈ 〈`− 2, . . . , 1〉:

• ŷi ← bi+2(ŷi+1, ŷi+2)
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Deliverables:

1. Give the recurrence for ♥i(y
′, y) and for bi(y′, y) (the boxed bit of the algorithm above). We’ve given

you the base case and the special case for the end of the sequence.

2. Analyze the runtime and space requirements of this algorithm as functions of |L| (the number of
labels) and ` (the length of the input sequence x and the output sequence ŷ).

4 Extra Credit: Introducing PCFGs

In this problem, you’ll become acquainted with probabilistic context-free grammars (PCFGs), a more
powerful family of models that can be used to parse sequences of words into trees. Chapters 9 and 10 in
the textbook give extensive motivation for these kinds of models, as well as algorithms for their use. This
problem will reveal a connection between PCFGs and HMMs.

A PCFG is defined as:

• A finite set of “nonterminal” symbols N

– A start symbol S ∈ N

• A finite alphabet Σ, called “terminal” symbols, distinct from N

• Production rule set R, each of the form “N → α” where

– The lefthand side N is a nonterminal from N

– The righthand sideα is a sequence of zero or more terminals and/or nonterminals: α ∈ (N∪Σ)∗

∗ Special case: Chomsky normal form constrains α to be either a single terminal symbol or
two nonterminals

• For each N ∈ N, a probability distribution over the rules where N is the lefthand side, p(∗ | N). We
will use pr to denote the conditional probability corresponding to rule r ∈ R.

A PCFG defines the probability of a tree t as:

p(t) =
∏
r∈R

pcountt(r)r (2)

where countt(r) is the number of times rule r is used in the tree t.
The definition of an HMM was given in class; we spell it out more carefully here.

• A finite set of states L (often referred to as “labels”)

– A probability distribution over initial states, pstart
– One state denoted 8 is the special stopping state

• A finite set of observable symbols V

• For each state y ∈ L:

– An “emission” probability distribution over V, pemission

– A “transition” probability distribution over next states, ptransition
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An HMM defines the probability distribution of a state sequence y and an emission sequence x (length
n, excluding the stop symbol) as shown on slide 36 in the lecture.

1. Demonstrate how to implement any HMM using a PCFG. Do this by showing formally how to con-
struct each element of the PCFG (N, S, Σ, R, and p) from the HMM. Hint: think of a state sequence as
a right-branching tree; the nonterminals will correspond to HMM states/labels, and you will probably
want to add a new nonterminal to serve as the start state S.

2. Transform the grammar you defined above into Chomsky normal form. Every tree derived by the
original grammar must have a corresponding tree in the new grammar, with the same probability. Hint:
his might be easier if you add a special “start” word to the beginning of every sequence recognized
by the new grammar, and you will likely need to add some new nonterminals, as well. On page 202
of your textbook, the transformation is sketched out for arbitrary context-free grammars that are not
probabilistic; to fully complete this exercise, you need to handle the probabilities as well as the rules,
but only need to show how to do it for your HMM-derived PCFG. Try to give a more precise definition
of the transformation than is given in the textbook.

3. Explain how to transform your new PCFG’s derivations back into derivations under the original PCFG.

4. Is it practical to use the CKY algorithm to find the most probable state sequence for a sentence x,
under an HMM? Why or why not?

5 Extra Credit (Challenging): Unseen Bigrams – Based on Eisenstein 6.4 (p. 135)

Consider a simple language in which each token is drawn from the vocabulary V with probability 1
|V| , inde-

pendent of all other tokens.
Given a corpus with M tokens, what is the expectation of the fraction of all possible bigrams that have

zero count (i.e., did not appear in the corpus)? Find a tight upper bound of the expectation. Show all your
steps.

Example Suppose V = {a, b, c}, M = 5, corpus = accba.
There are 4 bigrams in the corpus: ac, cc, cb, ba. And a total of |V|2 = 3× 3 = 9 possible bigrams.
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