
Vector Embeddings

CSE 447 / 517
February 3rd, 2022 (Week 5)

Logistics

- A3 is due tomorrow (Friday, 2/4)

Agenda
- Quiz 4 Solutions

- Vector embeddings

- “Static” word embeddings

- Contextualized word embeddings

- Q & A

Quiz 4 - Question 1 Setup
Consider three sample documents, that are similar to the ones in the
lecture.

 : great , we love NLP
 : say yes to NLP quizzes
 : great , no quizzes , we say

Tokens are separated by whitespace.

Compute the count matrix (see Lecture slide 8).

Quiz 4 - Question 1

 : great , we love NLP
 : say yes to NLP quizzes
 : great , no quizzes , we say

Vector
for x1

Vector
for x2

Vector
for x3

great 1 0 1

we 1 0 1

love 1 0 0

NLP 1 1 0

say 0 1 1

yes 0 1 0

to 0 1 0

quizzes 0 1 1

no 0 0 1

, 1 0 2

Quiz 4 - Question 2 Setup
Consider three sample documents, that are similar to the ones in the
lecture.

 : great , we love NLP
 : say yes to NLP quizzes
 : great , no quizzes , we say

Tokens are separated by whitespace.

Compute the positive pointwise mutual information (see Lecture Slide 13)
(word v for c-th document). Round to 2 decimal places.

Review: Positive PMI
Pointwise mutual information: a measurement of
association (in this case, token and documents).

Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Pointwise mutual information: a measurement of
association (in this case, token and documents).

Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

The count of token v in document c.
Pointwise mutual information: a measurement of
association (in this case, token and documents).

Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

The count of token v in document c.

How likely is token v to appear in the corpus
assuming tokens are independent (unigram).

Pointwise mutual information: a measurement of
association (in this case, token and documents).

Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

The count of token v in document c.

How many token v should we expect to see in
document c?

Pointwise mutual information: a measurement of
association (in this case, token and documents).

Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Pointwise mutual information: a measurement of
association (in this case, token and documents).

Quiz 4 - Question 2 Vector
for x1

Vector
for x2

Vector
for x3

great 1 0 1

we 1 0 1

love 1 0 0

NLP 1 1 0

say 0 1 1

yes 0 1 0

to 0 1 0

quizzes 0 1 1

no 0 0 1

, 1 0 2

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Quiz 4 - Question 2 Vector
for x1

Vector
for x2

Vector
for x3

great 1 0 1

we 1 0 1

love 1 0 0

NLP 1 1 0

say 0 1 1

yes 0 1 0

to 0 1 0

quizzes 0 1 1

no 0 0 1

, 1 0 2

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Quiz 4 - Question 2 Vector
for x1

Vector
for x2

Vector
for x3

great 1 0 1

we 1 0 1

love 1 0 0

NLP 1 1 0

say 0 1 1

yes 0 1 0

to 0 1 0

quizzes 0 1 1

no 0 0 1

, 1 0 2

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Word Embeddings: A Quick Review
● Motivation:

○ Represent words in a computationally efficient and semantically meaningful way

● Evaluation:
○ Intrinsic: word similarities, TOEFL-like synonyms, analogies, etc.
○ Extrinsic: do the embeddings improve system performance?

● Using embeddings in your model:
○ Freeze embeddings and use as-is in your model
○ Fine-tune embeddings, updating them as you train

Man-woman relations in embeddings

Comparative-superlative relations in embeddings

Distributional Hypothesis, again
● A word’s meaning is given by words that appear frequently close by
● When a word w appears in text, its context is the set of words that appear

nearby (in some window).
● Dense Vectors From 10,000 feet:

○ Find a bunch of times that w occurs in text.
○ Use the many contexts of w to build a vector.

These context words define banking.

Dense Word Vectors
● Let’s assign each word a dense word vector
● But each word’s vector should be similar to vectors of words that appear in

similar contexts.
● Example:

0.281
0.129
0.312
-1.29
-0.21

U.S. =

0.271
0.110
0.311
-1.33
-0.11

Washington =

-0.121
0.930
0.121
1.53
-0.51

grass =

If words appear in similar
contexts, they have similar
vectors!

“U.S.” and “Washington” occur in similar contexts!

"Static" Word Embeddings
Each word maps to a single vector, based on their occurrence with other words in
a large corpus.

Connects to LSA/I, parallels to LMs

Examples of popular pretrained word embeddings:

- word2vec: Trained on Google News
- GloVe: Trained on Wikipedia, Gigaword, Common Crawl, or Twitter
- FastText: Trained on Wikipedia or Common Crawl

Word2Vec: Overview
● Word2Vec is a framework for learning word vectors. Basic Idea:

● We have a large corpus of text.

● Every word in a fixed vocabulary is assigned a vector.

● Go through each position t in the text, which has a center word c and outside
(context) words o.

● Use the similarity of the word vectors for c and o to calculate the
probability of o given c.

● Training: Continuously adjust the word vectors to maximize this probability.

Word2Vec: Overview
● Example for computing P(wt+j | wt)

Word2Vec: Overview
● Example for computing P(wt+j | wt)

Word2Vec: Loss Function
● For each position t = 1 … T, predict context words within a fixed-size window

of size m, given the center word wt
● Likelihood (θ = parameters of the model, or things we want to optimize):

For each position
in the text. For each word

within the window

Probability of word in
window given center word.

Word2Vec: Loss Function
● Loss function J: Averaged negative log-likelihood

○ Work in logspace!
○ Negative to turn the problem from a maximization problem into a

minimization problem
● If we minimize the loss function J, then we maximize the predictive accuracy!

Word2Vec: Loss Function
● Question: How do we calculate P(wt+j | wt) ?
● Answer: Use two vectors per word w.

○ Use the vector vw when w is the center word.
○ Use the vector uw when w is the context word.

● Thus, for a center word c and a context word o:

● Look familiar?

Word2Vec: Now with Vectors!
● Example for computing P(wt+j | wt)

Word2Vec: Now with Vectors!
● Example for computing P(wt+j | wt)

Word2Vec: Why this prediction function?

● Softmax shows up again.
● We can train this with gradient descent.
● This model puts words that frequently co-occur nearby in vector space (to

maximize the dot product).

Clusters of dense word vectors

Why separate center and context vectors?

● Why use two vectors (one for when the word is the context, one for when the
word is the center)?
○ Makes optimization/training easier in practice.
○ Our final word vector is traditionally average of the context and center

vector for a word.

Why separate center and context vectors?

● Another angle:

Two Variants of Word2Vec
1. SkipGram (what we’ve seen so far): Predict context (outside) words given the

center word.
2. CBOW: Predict center word from the sum of surrounding word vectors.

CBOW in practice

Skipgram is like the reverse of CBOW?

Okay, okay just kidding, here's the real SkipGram
diagram:

Premise: define a vector for each token based its context in the data

- How do we get context? RNN-based Neural LM’s
- Hidden state hi at timestep i represents the left-context of token xi
- Compute an analogous right-context by training a right-to-left LM
- Simplest approach: concatenate the two contexts to get an embedding

Contextualized Word Embeddings

Contextualized Word Embeddings
ELMo (Peters et al., 2018)

- Used a multi-layer,
bidirectional LSTM

- Using ELMo instead of
static vectors: instant SOTA
on a lot of benchmark tasks

ELMo, visually

BERT
BERT (Devlin et al., 2019) :

● Instead of RNN, it uses transformers.

● Learning objectives:

○ Masked Language Model (MLM): randomly mask out words for model to predict.

○ Next Sentence Prediction (NSP): given a pair of sentences, does the second sentence
follow the first one? Helpful for understanding the relationship between sentences (for QA,
NLI, etc.).

BERT
Pretrain + finetune like we discussed!

BERT’s Performance on GLUE tasks (Devlin et al., 2019)

BERTology
Many many ideas are built on BERT:

● Multilingual BERT (Devlin et al., 2019):
○ pretrained on 104 language.

● RoBERTa (Liu et al., 2019):
○ removed NSP objective;
○ trained with larger mini-batches
○ larger learning rates;
○ more data;
○ longer pretraining time.

● Overview: Rogers et al. (2020)
● T5 (Raffel et al., 2019): model that explored many different options

https://arxiv.org/abs/2002.12327
https://arxiv.org/abs/1910.10683

Q & A

