Vector Embeddings

CSE 447 / 517
February 3rd, 2022 (Week 5)

Logistics

- A3 is due tomorrow (Friday, 2/4)

Agenda

- Quiz 4 Solutions
- Vector embeddings
- "Static" word embeddings
- Contextualized word embeddings
- Q \& A

Quiz 4 - Question 1 Setup

Consider three sample documents, $x_{1} x_{2} x_{3}$ that are similar to the ones in the lecture.
x_{1} : great, we love NLP
$x_{2 \text { : say yes to NLP quizzes }}$
x_{3} : great, no quizzes, we say
Tokens are separated by whitespace.
Compute the count matrix (see Lecture slide 8).

Quiz 4 - Question 1

x_{1} : great, we love NLP
x_{2} : say yes to NLP quizzes
x_{3} : great, no quizzes, we say

	Vector for $\mathbf{x}_{\mathbf{1}}$	Vector for $\mathbf{x}_{\mathbf{2}}$	Vector for \mathbf{x}_{3}
great	1	0	1
we	1	0	1
love	1	0	0
NLP	1	1	0
say	0	1	1
yes	0	1	0
to	0	1	0
quizzes	0	1	1
no	0	0	1
,	1	0	2

Quiz 4 - Question 2 Setup

Consider three sample documents, $x_{1} x_{2} x_{3}$ that are similar to the ones in the lecture.
x_{1} : great, we love NLP
x_{2} : say yes to NLP quizzes
x_{3} : great, no quizzes, we say
Tokens are separated by whitespace.
Compute the positive pointwise mutual information (see Lecture Slide 13) $[A]_{v, c}$ (word v for c-th document). Round to 2 decimal places.

Review: Positive PMI

Pointwise mutual information: a measurement of association (in this case, token and documents).

Review: Positive PMI

Pointwise mutual information: a measurement of association (in this case, token and documents).

$$
[\mathbf{A}]_{v, c}=\left[\log \frac{\operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\frac{\operatorname{count}_{\boldsymbol{x}_{1: C}}(v)}{N} \cdot \ell_{c}}\right]_{+}
$$

\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

Review: Positive PMI

Pointwise mutual information: a measurement of association (in this case, token and documents).
$[\mathbf{A}]_{v, c}=\left[\log \frac{\operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\frac{\operatorname{count} \boldsymbol{x}_{1: C}}{N}(v)} \cdot \ell_{c}\right]_{+}$
\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

Review: Positive PMI

Pointwise mutual information: a measurement of association (in this case, token and documents).

The count of token v in document c.
\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

Review: Positive PMI

Pointwise mutual information: a measurement of association (in this case, token and documents).

The count of token v in document c.

$$
\begin{gathered}
{[\mathbf{A}]_{v, c}=\left[\log \frac{\operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\frac{\operatorname{count}_{\boldsymbol{x}_{1: C}}(v)}{N} \cdot \ell_{c}}\right]_{+}} \\
\begin{array}{l}
\text { How many token } v \text { should we expect to see in } \\
\text { document c? }
\end{array}
\end{gathered}
$$

\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

Review: Positive PMI

Pointwise mutual information: a measurement of association (in this case, token and documents).

$$
\left.\begin{array}{rl}
{[\mathbf{A}]_{v, c}} & =\left[\log \frac{\operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\frac{\operatorname{count}_{\boldsymbol{x}_{1: C}(v)}}{N} \cdot \ell_{c}}\right]_{+} \\
& =\left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\operatorname{count}}\right]_{\boldsymbol{x}_{1: C}}(v) \cdot \ell_{c}
\end{array}\right]_{+} .
$$

\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

Quiz 4 - Question 2

$$
\begin{aligned}
& {[\mathbf{A}]_{v, c}=\left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_{\boldsymbol{c}}}(v)}{\operatorname{count} \boldsymbol{x}_{1: C}(v) \cdot \ell_{c}}\right]_{+}} \\
& \begin{aligned}
{[A]_{{ }^{\prime}}{ }_{N L P^{\prime \prime}, 2} } & =\left[\log \frac{17 \times 1}{2 \times 5}\right]_{+} \\
& \approx[0.53]_{+} \\
& =0.53
\end{aligned}
\end{aligned}
$$

\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[\mathrm{x}]_{+}: \max (0, \mathrm{x})$

	Vector for $\mathbf{x}_{\mathbf{1}}$	Vector for $\mathbf{x}_{\mathbf{2}}$	Vector for $\mathbf{x}_{\mathbf{3}}$
great	1	0	1
we	1	0	1
love	1	0	0
NLP	1	1	0
say	0	1	1
yes	0	1	0
to	0	1	0
quizzes	0	1	1
no	0	0	1
,	1	0	2

Quiz 4 - Question 2

$$
\begin{aligned}
& {\left[\begin{array}{rl}
{[\mathbf{A}]_{v, c}} & =\left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_{\boldsymbol{c}}}(v)}{\operatorname{count} \boldsymbol{x}_{1: C}(v) \cdot \ell_{c}}\right]_{+} \\
{[A]_{]_{w e},, 2}} & =\left[\log \frac{17 \times 0}{2 \times 5}\right]_{+} \\
& =[-\infty]_{+} \\
& =0
\end{array}\right.}
\end{aligned}
$$

\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

	Vector for $\mathbf{x}_{\mathbf{1}}$	Vector for $\mathbf{x}_{\mathbf{2}}$	Vector for $\mathbf{x}_{\mathbf{3}}$
great	1	0	1
we	1	0	1
love	1	0	0
NLP	1	1	0
say	0	1	1
yes	0	1	0
to	0	1	0
quizzes	0	1	1
no	0	0	1
,	1	0	2

Quiz 4 - Question 2

$$
\begin{aligned}
{[\mathbf{A}]_{v, c} } & =\left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\operatorname{count} \boldsymbol{x}_{1: C}(v) \cdot \ell_{c}}\right]_{+} \\
{[A]_{,,,, 3} } & =\left[\log \frac{17 \times 2}{3 \times 7}\right]_{+} \\
& \approx[0.48]_{+} \\
& =0.48
\end{aligned}
$$

\mathbf{N} : the total number of tokens
I_{c} : the length of document c
c: the index of the document
$[x]_{+}: \max (0, x)$

	Vector for $\mathbf{x}_{\mathbf{1}}$	Vector for $\mathbf{x}_{\mathbf{2}}$	Vector for $\mathbf{x}_{\mathbf{3}}$
great	1	0	1
we	1	0	1
love	1	0	0
NLP	1	1	0
say	0	1	1
yes	0	1	0
to	0	1	0
quizzes	0	1	1
no	0	0	1
,	1	0	2

Word Embeddings: A Quick Review

- Motivation:
- Represent words in a computationally efficient and semantically meaningful way
- Evaluation:
- Intrinsic: word similarities, TOEFL-like synonyms, analogies, etc.
- Extrinsic: do the embeddings improve system performance?
- Using embeddings in your model:
- Freeze embeddings and use as-is in your model
- Fine-tune embeddings, updating them as you train

Man-woman relations in embeddings

Comparative-superlative relations in embeddings

Distributional Hypothesis, again

- A word's meaning is given by words that appear frequently close by
- When a word w appears in text, its context is the set of words that appear nearby (in some window).
- Dense Vectors From 10,000 feet:
- Find a bunch of times that w occurs in text.
- Use the many contexts of w to build a vector.

Dense Word Vectors

- Let's assign each word a dense word vector
- But each word's vector should be similar to vectors of words that appear in similar contexts.
- Example:

"U.S." and "Washington" occur in similar contexts!

Exclusive: U.S. to impose arms embargo on South Sudan to end conflict - sources

Washington imposes weapons embargo on South Sudan

US maintains pressure on central and regional governments to end conflict

"Static" Word Embeddings

Each word maps to a single vector, based on their occurrence with other words in a large corpus.

Connects to LSA/I, parallels to LMs
Examples of popular pretrained word embeddings:

- word2vec: Trained on Google News
- GloVe: Trained on Wikipedia, Gigaword, Common Crawl, or Twitter
- FastText: Trained on Wikipedia or Common Crawl

Word2Vec: Overview

- Word2Vec is a framework for learning word vectors. Basic Idea:
- We have a large corpus of text.
- Every word in a fixed vocabulary is assigned a vector.
- Go through each position t in the text, which has a center word c and outside (context) words o.
- Use the similarity of the word vectors for c and o to calculate the probability of o given c.
- Training: Continuously adjust the word vectors to maximize this probability.

Word2Vec: Overview

- Example for computing $P\left(w_{t+j} \mid w_{t}\right)$

Word2Vec: Overview

- Example for computing $P\left(w_{t+j} \mid w_{t}\right)$

Word2Vec: Loss Function

- For each position $t=1 \ldots \mathrm{~T}$, predict context words within a fixed-size window of size m, given the center word w_{t}
- Likelihood ($\theta=$ parameters of the model, or things we want to optimize):

$$
L(\theta)=\prod_{\substack{\text { For each position }}}^{T} P\left(w_{t+j \mid} \prod_{-m \leq j \leq m} P \theta\right)
$$ in the text.

For each word within the window

Probability of word in window given center word.

Word2Vec: Loss Function

- Loss function J: Averaged negative log-likelihood
- Work in logspace!
- Negative to turn the problem from a maximization problem into a minimization problem
- If we minimize the loss function J, then we maximize the predictive accuracy!

$$
J(\theta)=-\frac{1}{T} \log L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{m \leq j \leq m \\ j \neq 0}} \log P\left(w_{t+j} \mid w_{t} ; \theta\right)
$$

Word2Vec: Loss Function

- Question: How do we calculate $P\left(w_{t+j} \mid w_{t}\right)$?
- Answer: Use two vectors per word w.
- Use the vector v_{w} when w is the center word.
- Use the vector u_{w} when w is the context word.
- Thus, for a center word c and a context word o:

$$
P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{w \in V} \exp \left(u_{w}^{T} v_{c}\right)}
$$

- Look familiar?

Word2Vec: Now with Vectors!

- Example for computing $P\left(w_{t+j} \mid w_{t}\right)$

outside context words center word outside context words in window of size 2 at position t in window of size 2

Word2Vec: Now with Vectors!

- Example for computing $P\left(w_{t+j} \mid w_{t}\right)$

Word2Vec: Why this prediction function?

- Softmax shows up again.
- We can train this with gradient descent.
- This model puts words that frequently co-occur nearby in vector space (to maximize the dot product).

Clusters of dense word vectors

Why separate center and context vectors?

- Why use two vectors (one for when the word is the context, one for when the word is the center)?
- Makes optimization/training easier in practice.
- Our final word vector is traditionally average of the context and center vector for a word.

Why separate center and context vectors?

- Another angle:

word2vec Explained: Deriving Mikolov et al.'s

Negative-Sampling Word-Embedding Method

Yoav Goldberg and Omer Levy \{yoav.goldberg, omerlevy\}@gmail.com

February 14, 2014

Abstract

${ }^{2}$ Throughout this note, we assume that the words and the contexts come from distinct vocabularies, so that, for example, the vector associated with the word dog will be different from the vector associated with the context dog. This assumption follows the literature, where it is not motivated. One motivation for making this assumption is the following: consider the case where both the word dog and the context dog share the same vector v. Words hardly appear in the contexts of themselves, and so the model should assign a low probability to $p(\operatorname{dog} \mid \operatorname{dog})$, which entails assigning a low value to $v \cdot v$ which is impossible.

Two Variants of Word2Vec

1. SkipGram (what we've seen so far): Predict context (outside) words given the center word.
2. CBOW: Predict center word from the sum of surrounding word vectors.

CBOW in practice

Input layer

1-hot input vectors
for each context word

Skipgram is like the reverse of CBOW?

Tover juqnI
 brow Jx9troo noss tof

Okay, okay just kidding, here's the real SkipGram diagram:
 Output layer
 probabilities of context words

Contextualized Word Embeddings

Premise: define a vector for each token based its context in the data

- How do we get context? RNN-based Neural LM's
- Hidden state h_{i} at timestep i represents the left-context of token x_{i}
- Compute an analogous right-context by training a right-to-left LM
- Simplest approach: concatenate the two contexts to get an embedding

Contextualized Word Embeddings

ELMo (Peters et al., 2018)

- Used a multi-layer, bidirectional LSTM
- Using ELMo instead of static vectors: instant SOTA on a lot of benchmark tasks

[^0]
ELMo, visually

The Broadway play premiered yesterday

BERT

BERT (Devlin et al., 2019) :

- Instead of RNN, it uses transformers.
- Learning objectives:
- Masked Language Model (MLM): randomly mask out words for model to predict.
- Next Sentence Prediction (NSP): given a pair of sentences, does the second sentence follow the first one? Helpful for understanding the relationship between sentences (for QA, NLI, etc.).

BERT

Pretrain + finetune like we discussed!

System	MNLI- $(\mathrm{m} / \mathrm{mm})$	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392 k	363 k	108 k	67 k	8.5 k	5.7 k	3.5 k	2.5 k	-
Pre-OpenAI SOTA	$80.6 / 80.1$	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	$76.4 / 76.1$	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT $^{\text {BERT }_{\text {BASE }}}$	$82.1 / 81.4$	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT $_{\text {LARGE }}$	$84.6 / 83.4$	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
\mathbf{l}^{2}	$\mathbf{8 6 . 7 / 8 5 . 9}$	$\mathbf{7 2 . 1}$	$\mathbf{9 2 . 7}$	$\mathbf{9 4 . 9}$	$\mathbf{6 0 . 5}$	$\mathbf{8 6 . 5}$	$\mathbf{8 9 . 3}$	$\mathbf{7 0 . 1}$	$\mathbf{8 2 . 1}$

BERT's Performance on GLUE tasks (Devlin et al., 2019)

BERTology

Many many ideas are built on BERT:

- Multilingual BERT (Devlin et al., 2019):
- pretrained on 104 language.
- RoBERTa (Liu et al., 2019):
- removed NSP objective;
- trained with larger mini-batches
- larger learning rates;
- more data;
- longer pretraining time.
- Overview: Rogers et al. (2020)
- T5 (Raffel et al., 2019): model that explored many different options

Q \& A

[^0]: *Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

