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Logistics

- A3 is due tomorrow (Friday, 2/4)



Agenda
- Quiz 4 Solutions

- Vector embeddings

- “Static” word embeddings

- Contextualized word embeddings

- Q & A



Quiz 4 - Question 1 Setup
Consider three sample documents,                that are similar to the ones in the 
lecture. 

    : great , we love NLP
    : say yes to NLP quizzes
    : great , no quizzes , we say

Tokens are separated by whitespace.

Compute the count matrix (see Lecture slide 8).



Quiz 4 - Question 1

    : great , we love NLP
    : say yes to NLP quizzes
    : great , no quizzes , we say

Vector 
for x1

Vector 
for x2

Vector 
for x3

great 1 0 1

we 1 0 1

love 1 0 0

NLP 1 1 0

say 0 1 1

yes 0 1 0

to 0 1 0

quizzes 0 1 1

no 0 0 1

, 1 0 2



Quiz 4 - Question 2 Setup
Consider three sample documents,                that are similar to the ones in the 
lecture. 

    : great , we love NLP
    : say yes to NLP quizzes
    : great , no quizzes , we say

Tokens are separated by whitespace.

Compute the positive pointwise mutual information (see Lecture Slide 13)      
(word v for c-th document). Round to 2 decimal places. 



Review: Positive PMI
Pointwise mutual information: a measurement of 
association (in this case, token and documents).



Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Pointwise mutual information: a measurement of 
association (in this case, token and documents).
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Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

The count of token v in document c.

How likely is token v to appear in the corpus 
assuming tokens are independent (unigram).  

Pointwise mutual information: a measurement of 
association (in this case, token and documents).



Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

The count of token v in document c.

How many token v should we expect to see in 
document c?

Pointwise mutual information: a measurement of 
association (in this case, token and documents).



Review: Positive PMI

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)

Pointwise mutual information: a measurement of 
association (in this case, token and documents).



Quiz 4 - Question 2 Vector 
for x1

Vector 
for x2

Vector 
for x3

great 1 0 1

we 1 0 1

love 1 0 0

NLP 1 1 0

say 0 1 1

yes 0 1 0

to 0 1 0

quizzes 0 1 1

no 0 0 1

, 1 0 2

N: the total number of tokens
lc: the length of document c
c: the index of the document
[x]+: max(0, x)
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Word Embeddings: A Quick Review
● Motivation:

○ Represent words in a computationally efficient and semantically meaningful way

● Evaluation:
○ Intrinsic: word similarities, TOEFL-like synonyms, analogies, etc.
○ Extrinsic: do the embeddings improve system performance?

● Using embeddings in your model:
○ Freeze embeddings and use as-is in your model
○ Fine-tune embeddings, updating them as you train



Man-woman relations in embeddings



Comparative-superlative relations in embeddings



Distributional Hypothesis, again
● A word’s meaning is given by words that appear frequently close by
● When a word w appears in text, its context is the set of words that appear 

nearby (in some window).
● Dense Vectors From 10,000 feet:

○ Find a bunch of times that w occurs in text.
○ Use the many contexts of w to build a vector.

These context words define banking.



Dense Word Vectors
● Let’s assign each word a dense word vector
● But each word’s vector should be similar to vectors of words that appear in 

similar contexts.
● Example:

0.281
0.129
0.312
-1.29
-0.21

U.S. =

0.271
0.110
0.311
-1.33
-0.11

Washington =

-0.121
0.930
0.121
1.53
-0.51

grass =

If words appear in similar 
contexts, they have similar 
vectors!



“U.S.” and “Washington” occur in similar contexts!



"Static" Word Embeddings
Each word maps to a single vector, based on their occurrence with other words in 
a large corpus.

Connects to LSA/I, parallels to LMs

Examples of popular pretrained word embeddings:

- word2vec: Trained on Google News
- GloVe: Trained on Wikipedia, Gigaword, Common Crawl, or Twitter
- FastText: Trained on Wikipedia or Common Crawl



Word2Vec: Overview
● Word2Vec is a framework for learning word vectors. Basic Idea:

● We have a large corpus of text.

● Every word in a fixed vocabulary is assigned a vector.

● Go through each position t in the text, which has a center word c and outside 
(context) words o.

● Use the similarity of the word vectors for c and o to calculate the 
probability of o given c.

● Training: Continuously adjust the word vectors to maximize this probability.



Word2Vec: Overview
● Example for computing P(wt+j | wt )



Word2Vec: Overview
● Example for computing P(wt+j | wt )



Word2Vec: Loss Function
● For each position t = 1 … T, predict context words within a fixed-size window 

of size m, given the center word wt 
● Likelihood (θ = parameters of the model, or things we want to optimize):

For each position 
in the text. For each word 

within the window

Probability of word in 
window given center word.



Word2Vec: Loss Function
● Loss function J: Averaged negative log-likelihood

○ Work in logspace!
○ Negative to turn the problem from a maximization problem into a 

minimization problem
● If we minimize the loss function J, then we maximize the predictive accuracy!



Word2Vec: Loss Function
● Question: How do we calculate P(wt+j | wt ) ?
● Answer: Use two vectors per word w.

○ Use the vector vw when w is the center word.
○ Use the vector uw when w is the context word.

● Thus, for a center word c and a context word o:

● Look familiar?



Word2Vec: Now with Vectors!
● Example for computing P(wt+j | wt )



Word2Vec: Now with Vectors!
● Example for computing P(wt+j | wt )



Word2Vec: Why this prediction function?

● Softmax shows up again.
● We can train this with gradient descent.
● This model puts words that frequently co-occur nearby in vector space (to 

maximize the dot product).



Clusters of dense word vectors



Why separate center and context vectors?

● Why use two vectors (one for when the word is the context, one for when the 
word is the center)?
○ Makes optimization/training easier in practice.
○ Our final word vector is traditionally average of the context and center 

vector for a word.



Why separate center and context vectors?

● Another angle:



Two Variants of Word2Vec
1. SkipGram (what we’ve seen so far): Predict context (outside) words given the 

center word.
2. CBOW: Predict center word from the sum of surrounding word vectors.



CBOW in practice



Skipgram is like the reverse of CBOW?



Okay, okay just kidding, here's the real SkipGram 
diagram:



Premise: define a vector for each token based its context in the data

- How do we get context? RNN-based Neural LM’s
- Hidden state hi at timestep i represents the left-context of token xi 
- Compute an analogous right-context by training a right-to-left LM
- Simplest approach: concatenate the two contexts to get an embedding

Contextualized Word Embeddings



Contextualized Word Embeddings
ELMo (Peters et al., 2018)

- Used a multi-layer, 
bidirectional LSTM

- Using ELMo instead of 
static vectors: instant SOTA 
on a lot of benchmark tasks



ELMo, visually



BERT
BERT (Devlin et al., 2019) :

● Instead of RNN, it uses transformers.

● Learning objectives:

○ Masked Language Model (MLM): randomly mask out words for model to predict. 

○ Next Sentence Prediction (NSP): given a pair of sentences, does the second sentence 
follow the first one? Helpful for understanding the relationship between sentences (for QA, 
NLI, etc.).



BERT
Pretrain + finetune like we discussed!

BERT’s Performance on GLUE tasks (Devlin et al., 2019)



BERTology
Many many ideas are built on BERT:

● Multilingual BERT (Devlin et al., 2019): 
○ pretrained on 104 language.

● RoBERTa (Liu et al., 2019): 
○ removed NSP objective; 
○ trained with larger mini-batches
○ larger learning rates; 
○ more data; 
○ longer pretraining time. 

● Overview: Rogers et al. (2020)
● T5 (Raffel et al., 2019): model that explored many different options

https://arxiv.org/abs/2002.12327
https://arxiv.org/abs/1910.10683


Q & A


