Vector Embeddings

CSE 447 / 517 February 3rd, 2022 (Week 5)

Logistics

- A3 is due tomorrow (Friday, 2/4)

Agenda

- Quiz 4 Solutions
- Vector embeddings
 - "Static" word embeddings
 - Contextualized word embeddings
- Q&A

Quiz 4 - Question 1 Setup

Consider three sample documents, $x_1 \ x_2 \ x_3$ that are similar to the ones in the lecture.

 x_1 : great , we love NLP x_2 : say yes to NLP quizzes x_3 : great , no quizzes , we say

Tokens are separated by whitespace.

Compute the count matrix (see Lecture slide 8).

Quiz 4 - Question 1

 $egin{aligned} x_1: & ext{great} \ , & ext{we love NLP} \ x_2: & ext{say yes to NLP quizzes} \ x_3: & ext{great} \ , & ext{no quizzes} \ , & ext{we say} \end{aligned}$

	Vector for x ₁	Vector for x ₂	Vector for x ₃		
great	1	0	1		
we	1	0	1		
love	1	0	0		
NLP	1	1	0		
say	0	1	1		
yes	0	1	0		
to	0	1	0		
quizzes	0	1	1		
no	0	0	1		
,	1	0	2		

Quiz 4 - Question 2 Setup

Consider three sample documents, $x_1 \ x_2 \ x_3$ that are similar to the ones in the lecture.

Tokens are separated by whitespace.

Compute the positive pointwise mutual information (see Lecture Slide 13) $[A]_{v,c}$ (word v for c-th document). Round to 2 decimal places.

Pointwise mutual information: a measurement of association (in this case, token and documents).

Pointwise mutual information: a measurement of association (in this case, token and documents).

$$[\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{\boldsymbol{x}_c}(v)}{\frac{\operatorname{count}_{\boldsymbol{x}_{1:C}}(v)}{N} \cdot \ell_c}\right]_+$$

N: the total number of tokens I_c : the length of document c c: the index of the document $[x]_+$: max(0, x)

Pointwise mutual information: a measurement of association (in this case, token and documents).

The count of token v in document c.

$$[\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{\boldsymbol{x}_c}(v)}{\frac{\operatorname{count}_{\boldsymbol{x}_{1:C}}(v)}{N} \cdot \ell_c} \right]_+$$

N: the total number of tokens I_c: the length of document c c: the index of the document [x]₊: max(0, x)

Pointwise mutual information: a measurement of association (in this case, token and documents).

The count of token v in document c.

Pointwise mutual information: a measurement of association (in this case, token and documents).

The count of token v in document c.

 $[x]_: max(0, x)$

Pointwise mutual information: a measurement of association (in this case, token and documents).

$$egin{aligned} [\mathbf{A}]_{v,c} &= \left[\lograc{\operatorname{count}_{m{x}_c}(v)}{rac{\operatorname{count}_{m{x}_{1:C}}(v)}{N}\cdot\ell_c}
ight]_+ \ &= \left[\lograc{N\cdot\operatorname{count}_{m{x}_c}(v)}{\operatorname{count}_{m{x}_{1:C}}(v)\cdot\ell_c}
ight]_+ \end{aligned}$$

N: the total number of tokens I_c: the length of document c c: the index of the document [x]₊: max(0, x)

Quiz 4 - Question 2 $[\mathbf{A}]_{v,c} = \left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_c}(v)}{(1 - 1)^{1/2}}\right]$

$$[\mathbf{A}]_{v,c} = \left\lfloor \log \frac{\omega_c \cdot \mathbf{v}}{\operatorname{count}_{\boldsymbol{x}_{1:C}}(v) \cdot \ell_c} \right\rfloor_+$$

$$egin{aligned} &[A]_{"NLP",\,2} = \left\lfloor \log rac{17 imes 1}{2 imes 5}
ight
floor_+ \ &pprox \left[0.53
ight
floor_+ \ &= 0.53 \end{aligned}$$

N: the total number of tokens I_c : the length of document c c: the index of the document $[x]_+$: max(0, x)

	Vector for x ₁	Vector for x ₂	Vector for x ₃		
great	1	0	1		
we	1	0	1		
love	1	0	0		
NLP	1	1	0		
say	0	1	1		
yes	0	1	0		
to	0	1	0		
quizzes	0	1	1		
no	0	0	1		
,	1	0	2		

Quiz 4 - Question 2

$$[\mathbf{A}]_{v,c} = \left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_c}(v)}{\operatorname{count}_{\boldsymbol{x}_{1:C}}(v) \cdot \ell_c}\right]_+$$

$$egin{aligned} &[A]_{"we",\,2} = \left[\lograc{17 imes 0}{2 imes 5}
ight]_+ \ &= [-\infty]_+ \ &= 0 \end{aligned}$$

N: the total number of tokens I_c : the length of document c c: the index of the document $[x]_+$: max(0, x)

	Vector for x ₁	Vector for x ₂	Vector for x ₃		
great	1	0	1		
we	1	0	1		
love	1	0	0		
NLP	1	1	0		
say	0	1	1		
yes	0	1	0		
to	0	1	0		
quizzes	0	1	1		
no	0	0	1		
3	1	0	2		

Quiz 4 - Question 2

$$[\mathbf{A}]_{v,c} = \left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_c}(v)}{\operatorname{count}_{\boldsymbol{x}_{1:C}}(v) \cdot \ell_c}\right]_+$$

$$egin{aligned} & [A]_{",",\,3} = \left[\lograc{17 imes 2}{3 imes 7}
ight]_+ \ & pprox \left[0.48
ight]_+ \ & = 0.48 \end{aligned}$$

N: the total number of tokens I_c: the length of document c c: the index of the document [x]₊: max(0, x)

	Vector for x ₁	Vector for x ₂	Vector for x ₃		
great	1	0	1		
we	1	0	1		
love	1	0	0		
NLP	1	1	0		
say	0	1	1		
yes	0	1	0		
to	0	1	0		
quizzes	0	1	1		
no	0	0	1		
,	1	0	2		

Word Embeddings: A Quick Review

- Motivation:
 - Represent words in a computationally efficient and semantically meaningful way
- Evaluation:
 - Intrinsic: word similarities, TOEFL-like synonyms, analogies, etc.
 - Extrinsic: do the embeddings improve system performance?
- Using embeddings in your model:
 - *Freeze* embeddings and use as-is in your model
 - *Fine-tune* embeddings, updating them as you train

Man-woman relations in embeddings

Comparative-superlative relations in embeddings

Distributional Hypothesis, again

- A word's meaning is given by words that appear frequently close by
- When a word *w* appears in text, its context is the set of words that appear nearby (in some window).
- Dense Vectors From 10,000 feet:
 - Find a bunch of times that *w* occurs in text.
 - Use the many contexts of *w* to build a vector.

...government debt problems turning into **banking** crises as happened in 2009... ...saying that Europe needs unified **banking** regulation to replace the hodgepodge... ...India has just given its **banking** system a shot in the arm... These context words define banking.

Dense Word Vectors

- Let's assign each word a dense word vector
- But each word's vector should be similar to vectors of words that appear in similar contexts.
- Example:

"U.S." and "Washington" occur in similar contexts!

WORLD NEWS FEBRUARY 2, 2018 / 1:09 AM / 11 DAYS AGO

Exclusive: U.S. to impose arms embargo on South Sudan to end conflict - sources

Washington imposes weapons embargo on South Sudan

US maintains pressure on central and regional governments to end conflict

"Static" Word Embeddings

Each word maps to a single vector, based on their occurrence with other words in a large corpus.

Connects to LSA/I, parallels to LMs

Examples of popular pretrained word embeddings:

- word2vec: Trained on Google News
- GloVe: Trained on Wikipedia, Gigaword, Common Crawl, or Twitter
- **FastText**: Trained on Wikipedia or Common Crawl

Word2Vec: Overview

- Word2Vec is a framework for learning word vectors. Basic Idea:
- We have a large corpus of text.
- Every word in a fixed vocabulary is assigned a vector.
- Go through each position *t* in the text, which has a center word *c* and outside (context) words *o*.
- Use the similarity of the word vectors for *c* and *o* to calculate the probability of *o* given *c*.
- Training: Continuously adjust the word vectors to maximize this probability.

Word2Vec: Overview

• Example for computing $P(w_{t+i} | w_t)$

Word2Vec: Overview

• Example for computing $P(w_{t+i} | w_t)$

Word2Vec: Loss Function

- For each position t = 1 ... T, predict context words within a fixed-size window of size m, given the center word w_t
- Likelihood (θ = parameters of the model, or things we want to optimize):

Word2Vec: Loss Function

- Loss function *J*: Averaged negative log-likelihood
 - Work in logspace!
 - Negative to turn the problem from a maximization problem into a minimization problem
- If we minimize the loss function *J*, then we maximize the predictive accuracy!

$$J(\theta) = -\frac{1}{T}\log L(\theta) = -\frac{1}{T}\sum_{t=1}^{T}\sum_{\substack{-m \le j \le m \\ j \ne 0}}\log P(w_{t+j} \mid w_t; \theta)$$

Word2Vec: Loss Function

- Question: How do we calculate $P(w_{t+i} | w_t)$?
- Answer: Use two vectors per word w.
 - Use the vector v_w when w is the center word.
 - \circ Use the vector u_w when w is the context word.
- Thus, for a center word *c* and a context word *o*:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

• Look familiar?

Word2Vec: Now with Vectors!

• Example for computing $P(w_{t+i} | w_t)$

Word2Vec: Now with Vectors!

• Example for computing $P(w_{t+i} | w_t)$

Word2Vec: Why this prediction function?

$$P(o|c) = \underbrace{\exp(u_o^T v_c)}_{\sum_{w \in V} \exp(u_w^T v_c)} \xrightarrow{\text{Outproduct compares similarity of o and c.}_{\text{Larger dot product = larger probability}}$$

Det preduct compares similarity of c and c

- Softmax shows up again.
- We can train this with gradient descent.
- This model puts words that frequently co-occur nearby in vector space (to maximize the dot product).

Clusters of dense word vectors

Why separate center and context vectors?

- Why use two vectors (one for when the word is the context, one for when the word is the center)?
 - Makes optimization/training easier in practice.
 - Our final word vector is traditionally average of the context and center vector for a word.

Why separate center and context vectors?

Another angle:

word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method

> Yoav Goldberg and Omer Levy {yoav.goldberg,omerlevy}@gmail.com

> > February 14, 2014

²Throughout this note, we assume that the words and the contexts come from distinct vocabularies, so that, for example, the vector associated with the word *dog* will be different from the vector associated with the context *dog*. This assumption follows the literature, where it is not motivated. One motivation for making this assumption is the following: consider the case where both the word *dog* and the context *dog* share the same vector v. Words hardly appear in the contexts of themselves, and so the model should assign a low probability to p(dog|dog), which entails assigning a low value to $v \cdot v$ which is impossible.

Two Variants of Word2Vec

- 1. **SkipGram** (what we've seen so far): Predict context (outside) words given the center word.
- 2. **CBOW**: Predict center word from the sum of surrounding word vectors.

CBOW in practice

Input layer

1-hot input vectors for each context word

Skipgram is like the reverse of CBOW?

Input layer

1-hot input vectors for each context word

Okay, okay just kidding, here's the real SkipGram diagram:

Contextualized Word Embeddings

Premise: define a vector for each token based its context in the data

- How do we get context? RNN-based Neural LM's
 - Hidden state h_i at timestep *i* represents the left-context of token x_i
 - Compute an analogous right-context by training a right-to-left LM
 - Simplest approach: concatenate the two contexts to get an embedding

Contextualized Word Embeddings

ELMo (Peters et al., 2018)

- Used a multi-layer, bidirectional LSTM
- Using ELMo instead of static vectors: instant SOTA on a lot of benchmark tasks

*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

ELMo, visually

BERT

BERT (Devlin et al., 2019) :

- Instead of RNN, it uses *transformers*.
- Learning objectives:
 - **Masked Language Model** (MLM): randomly mask out words for model to predict.
 - Next Sentence Prediction (NSP): given a pair of sentences, does the second sentence follow the first one? Helpful for understanding the relationship between sentences (for QA, NLI, etc.).

BERT

Pretrain + finetune like we discussed!

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

BERT's Performance on GLUE tasks (Devlin et al., 2019)

BERTology

Many many ideas are built on BERT:

- Multilingual BERT (Devlin et al., 2019):
 - pretrained on 104 language.
- RoBERTa (Liu et al., 2019):
 - removed NSP objective;
 - trained with larger mini-batches
 - larger learning rates;
 - more data;
 - longer pretraining time.
- Overview: Rogers et al. (2020)
- T5 (<u>Raffel et al., 2019</u>): model that explored many different options

Q & A