CSE 447 / 517 February 10, 2022 (Week 6)

Agenda

- Finite State Automata
- Weighted Finite-State Transducer
- Quiz 5 Solutions
- Q&A

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, δ : Q × (Σ ∪ {ε}) → 2^Q

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, δ : Q × (Σ ∪ {ε}) → 2^Q

In this example: $\{q_0, q_1, q_2, q_3\}$

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, δ : Q × (Σ ∪ {ε}) → 2^Q

In this example: **q**₀

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$ Ο
 - a set of final states, $F \subseteq Q$ 0
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta : \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{\mathbb{Q}}$

Start state is

denoted by

edge.

In this example: **q**

Defined by:

- a finite set of states, Q
 - a start state, $q_0 ∈ Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, δ : Q × (Σ ∪ {ε}) → 2^Q

In this example: {q₂, q₃}

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, δ : Q × (Σ ∪ {ε}) → 2^Q

In this example: {a, b, c}

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ϵ) to a set of states, $\delta : Q \times (\Sigma \cup {\epsilon}) \rightarrow 2^Q$

In this example: { $(q_0, a) \rightarrow \{q_1, q_2\}, (q_0, b) \rightarrow \emptyset, ...$ }

An FSA, F, defines a *language*, L(F), by accepting the strings that belong to the language, and reject strings that do not.

What is accepting a string?

An FSA, F, defines a *language*, L(F), by accepting the strings that belong to the language, and reject strings that do not.

What is accepting a string?

As long as we could have (1) landed a final state (2) after we consume our entire input, then the FSA accept the string!

Deterministic v.s. Non-deterministic FSA:

• An FSA is deterministic (a "deterministic finite automata") if there is exactly one path per string in L(F).

Deterministic v.s. Non-deterministic FSA:

• An FSA is deterministic (a "deterministic finite automata") if there is exactly one path per string in L(F).

• Any NFA can be mechanically transformed into a DFA one with the same language, but the number of states may explode.

Weighted FSA:

- Associate each transition (edge) with a weight
- Associate the start state with a weight
- Associate each final state with a weight
- To score a path:

$$\lambda(q_0) + \left(\sum_{i=1}^n \delta(q_{i-1}, x_i, q_i)\right) + \rho(q_n)$$

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a finite alphabet of output symbols, Ω
- a transition function that maps a state pair and a pair of symbols (or ε) to weights,
 δ : Q × (Σ ∪ {ε}) × (Ω ∪ {ε}) × Q → R
- an initial weight function, $\lambda: Q \to R$
- a final weight function, $\rho: Q \rightarrow R$

Defined by:

- a finite set of states, Q
 - a start state, $q_0 \in Q$
 - a set of final states, $F \subseteq Q$
- a finite alphabet of input symbols, Σ
- a finite alphabet of output symbols, Ω
- a transition function that maps a state pair and a pair of symbols (or ε) to weights,
 δ : Q × (Σ ∪ {ε}) × (Ω ∪ {ε}) × Q → R
- an initial weight function, $\lambda: Q \to R$
- a final weight function, $\rho: Q \rightarrow R$

These are from the "weighted" part.

Notation: input symbol / output symbol / weight

Quiz 5 - Problem 1 Setup

Fill in the output given the input after applying each WFST.

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q ₂

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q ₂

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q_2
3	abc	q ₂

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q_2
3	abc	q_2
3	abcp	q ₃

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q_2
3	abc	q_2
3	abcp	q_3

Input

Output

State

F

This means we pass "abbc" through F first, then pass its output through G (note the ordering).

Input

Output

F

F

F

F

Input	Output	State
abbc	3	q ₀
bbc	3	q ₁
bbc	а	q_2
bc	ab	q ₂
С	abb	q ₂
3	abbc	q ₂

F

Input	Output	State
abbc	3	\boldsymbol{q}_0
bbc	3	q ₁
bbc	а	q_2
bc	ab	q_2
С	abb	q_2
3	abbc	q_2
3	abbcp	Q ₃

F

F

F

F

Input	Output	State
abbcp	3	q_0
bbcp	b	q ₁
bcp	bb	q ₁

F

3 steps later

F

F

F

Quiz 5 - Problem 2 - Setup

Given the two WFST, what is the score of the path of applying F(abc)? What about G(aabc)?

Also given for both WFSTs:

$$egin{aligned} \lambda\left(q_{0}
ight) &= 1 \
ho\left(q_{n}
ight) &= n \end{aligned}$$

F

Quiz 5 - Problem 2 - Setup

Quiz 5 - Problem 2 - Setup

Input Output

it State

F

Cost:

We did this one already -except this time we also keep track of the cost. Cost: 0

F

Cost: 1+1=2

Cost: 2+(-1)=1

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q ₂

F

Cost: 1+0=1

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q_2
3	abc	q ₂

Cost: 1+0=1

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q_2
3	abc	q_2
3	abcp	q ₃

F

Cost: 1+(-1)=0

Input	Output	State
abc	3	q ₀
bc	3	q ₁
bc	а	q_2
С	ab	q_2
3	abc	q_2
3	abcp	q ₃

Input Output State

Cost: 4

Q & A