Weighted Finite State Transducers

CSE 447 / 517

February 10, 2022 (Week 6)

Agenda

- Finite State Automata
- Weighted Finite-State Transducer
- Quiz 5 Solutions
- Q \& A

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$

In this example: $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\boldsymbol{q}_{0} \in \mathbf{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$

In this example: q_{0}

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a
symbol (or an empty string, denoted ε) to a
- a transition function that maps a state and a
symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$

Start state is denoted by this incoming edge.

In this example: q_{0}

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathbf{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{\mathrm{Q}}$

In this example: $\left\{q_{2}, q_{3}\right\}$

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$

In this example: $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

Finite State Automata

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a transition function that maps a state and a symbol (or an empty string, denoted ε) to a set of states, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$

In this example: \{

$$
\left(\mathrm{q}_{0}, \mathrm{a}\right) \rightarrow\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\},\left(\mathrm{q}_{0}, \mathrm{~b}\right) \rightarrow \varnothing, \ldots
$$

Finite State Automata

An FSA, F, defines a language, $L(F)$, by accepting the strings that belong to the language, and reject strings that do not.

What is accepting a string?

Finite State Automata

An FSA, F, defines a language, $L(F)$, by accepting the strings that belong to the language, and reject strings that do not.

What is accepting a string?
As long as we could have (1) landed a final state (2) after we consume our entire input, then the FSA accept the string!

Finite State Automata

Deterministic v.s. Non-deterministic FSA:

- An FSA is deterministic (a "deterministic finite automata") if there is exactly one path per string in $L(F)$.

Finite State Automata

Deterministic v.s. Non-deterministic FSA:

- An FSA is deterministic (a "deterministic finite automata") if there is exactly one path per string in $L(F)$.

- Any NFA can be mechanically transformed into a DFA one with the same language, but the number of states may explode.

Finite State Automata

Weighted FSA:

- Associate each transition (edge) with a weight
- Associate the start state with a weight
- Associate each final state with a weight
- To score a path:

$$
\lambda\left(q_{0}\right)+\left(\sum_{i=1}^{n} \delta\left(q_{i-1}, x_{i}, q_{i}\right)\right)+\rho\left(q_{n}\right)
$$

Weighted Finite State Transducer

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a finite alphabet of output symbols, Ω
- a transition function that maps a state pair and a pair of symbols (or ε) to weights,
 $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Omega \cup\{\varepsilon\}) \times Q \rightarrow R$
- an initial weight function, $\lambda: Q \rightarrow R$
- a final weight function, $\rho: Q \rightarrow R$

Weighted Finite State Transducer

Defined by:

- a finite set of states, Q
- a start state, $\mathrm{q}_{0} \in \mathrm{Q}$
- a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$
- a finite alphabet of input symbols, Σ
- a finite alphabet of output symbols, Ω
- a transition function that maps a state pair and a pair of symbols (or ε) to weights,

Notation:

input symbol / output
 $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Omega \cup\{\varepsilon\}) \times Q \rightarrow R$

- an initial weight function, $\lambda: Q \rightarrow R$
- a final weight function, $\rho: Q \rightarrow R$

These are from the
"weighted" part.

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:

Input: ab
Output:

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:

Input: ab
Output:

Start as usual.

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:
Input: ab
Output:

By taking this transition, it emits a symbol "b".

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:
Input: ab
Output: b

By taking this transition, it emits a symbol "b".

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:
Input: ab
Output: b

By taking this transition, it emits a symbol "c".

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:
Input: ab
Output: bc

By taking this transition, it emits a symbol "c".

Weighted Finite State Transducer

Key: it is still a weighted FSA, but also "emit" symbols along the way!

Example:
Input: ab
Output: bc

At this point, we consumed all of the input symbols and landed on a final state!

Quiz 5 - Problem 1 Setup

Fill in the output given the input after applying each WFST.

G

F

Quiz 5 - Problem 1 - F(abc)

Input	Output	State
abc	ε	q_{0}

Quiz 5 - Problem 1-F(abc)

Input	Output	State
abc	ε	q_{0}
bc	ε	q_{1}

Quiz 5 - Problem 1-F(abc)

Input	Output	State	
abc	ε	q_{0}	
bc	ε	q_{1}	¢р.1 ${ }^{\text {ce.1 }}$
bc	a	q_{2}	

Quiz 5 - Problem 1-F(abc)

Input	Output	
abc	ε	State
bc		
bc	ε	q_{0}
c	a	q_{2}

Quiz 5 - Problem 1-F(abc)

Again!

Input	Output	
abc	ε	State
bc		
bc	E	q_{1}
c	a	q_{2}
ε	ab	q_{2}
abc	q_{2}	

Quiz 5 - Problem 1-F(abc)

Input	Output	
abc	ε	q_{0}
bc	c	q_{1}
bc	a	q_{2}
c	ab	q_{2}
ε	abc	q_{2}
ε	abcp	q_{3}

Quiz 5 - Problem 1 - F(abc)

Input	Sutput	
abc	ε	c
bc	a	q_{2}
bc		
c	ab	q_{2}
ε	abc	q_{2}
ε	abcp	q_{3}

Quiz 5 - Problem 1 - G o F(abbc)

Input
Output State

F

G

Quiz 5 - Problem 1 - G $\circ \mathrm{F}(\mathrm{abbc})$

This means we pass "abbc" through F first, then pass its output through G (note the ordering).

Input
 Output State

F

G

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State
abbc	ε	q_{0}

F

G

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State
abbc	ε	q_{0}
bbc	ε	q_{1}

F

G

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State	*:0 ${ }^{\text {a }}$ a/b:2 2 *:0
abbc	ε	q_{0}	
bbc	ε	q_{1}	$b / p: 1$
bbc	a	q_{2}	F

G

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State
abbc	ε	q_{0}
bbc	ε	q_{1}
bbc	a	q_{2}
bc	$a b$	q_{2}
c	$a b b$	q_{2}
ε	$a b b c$	q_{2}

F

G

Quiz 5 - Problem 1 - G o F(abbc)

Quiz 5 - Problem 1 - G o F(abbc)

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State
abbcp	ε	q_{0}

F

G

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State
abbcp	ε	q_{0}
bbcp	b	q_{1}

F

G

Quiz 5 - Problem 1 - G o F(abbc)

Input	Output	State
abbcp	ε	q_{0}
bbcp	b	q_{1}
bcp	bb	q_{1}

F

G

Quiz 5 - Problem 1-G \circ F(abbc)
Input
abbcp
bbcp
$b c p$

3 steps later

G

Quiz 5 - Problem 1 - G o F(abbc)

Quiz 5 - Problem 1-G \circ F(abbc)

Quiz 5 - Problem 1 -F $\circ \mathrm{G}(a b b c)$

Input	Output	State
abbc	ε	q_{0}

F

G

Quiz 5 - Problem 1 -F $\circ \mathrm{G}(a b b c)$

Input	Output	State
abbc	ε	q_{0}
ε	\ldots	
		pbbc

ε

You get the gist of it!

G

Quiz 5 - Problem 2 - Setup

Given the two WFST, what is the score of the path of applying $F(a b c)$? What about G(aabc)?

Also given for both WFSTs:

F

$$
\begin{aligned}
& \lambda\left(q_{0}\right)=1 \\
& \rho\left(q_{n}\right)=n
\end{aligned}
$$

Quiz 5 - Problem 2 - Setup

Given the two WFST, what is the score of the path of applying $F(a b c)$? What about G(aabc)?

Also given for both WFSTs:
What is the cost of starting at q_{0} ?

$$
\begin{aligned}
& \lambda\left(q_{0}\right)=1 \\
& \rho\left(q_{n}\right)=n
\end{aligned}
$$

G

Quiz 5 - Problem 2 - Setup

Given the two WFST, what is the score of the path of applying $F(a b c)$? What about G(aabc)?

Also given for both WFSTs:

$$
\begin{aligned}
& \lambda\left(q_{0}\right)=1 \\
& \rho\left(q_{n}\right)=n
\end{aligned}
$$

What is the cost of ending at q_{n} ?

Quiz 5 - Problem 2 - F(abc)

Input
Output
State

F

Cost:

Quiz 5 - Problem 2 - F(abc)

Input Output State

F

We did this one already -except this time we also keep track of the cost.

Quiz 5 - Problem 2 - F(abc)

Input	Output	State
abc	ε	q_{0}

F

Cost: 0+1=1

$$
\lambda\left(q_{0}\right)=1
$$

Quiz 5 - Problem 2 - F(abc)

Input	Output	State
abc	ε	q_{0}
bc	ε	q_{1}

F

Cost: 1+1=2

Quiz 5 - Problem 2 - F(abc)

Cost: 2+(-1)=1

Quiz 5 - Problem 2 - F(abc)

Input	Output		
abc	ε	State	
bc			
bc	$\mathrm{\varepsilon}$	C	
c	a	q_{2}	Cost: $1+0=1$

Quiz 5 - Problem 2 - F(abc)

Input	Output		
abc			
bc			
bc	ε	E	
c	a	q_{2}	Cost: $1+0=1$
ε	ab	q_{2}	

Quiz 5 - Problem 2 - F(abc)

Input	Output		
abc	ε	State	
bc			
bc	c	q	
c	a	q_{2}	Cost: $1+(-1)=0$
ε	abc	q_{2}	

Quiz 5 - Problem 2 - F(abc)

| Input | Output | |
| :---: | :---: | :---: | :---: |
| abc | ε | c |
| bc | | |
| bc | a | q_{2} |
| ab | abc | q_{2} |
| ε | abcp | q_{3} |

Quiz 5 - Problem 2-G(aabc)

Input
Output
State

G

Cost: 0

Quiz 5 - Problem 2-G(aabc)

Input	Output	State
	\ldots	
ε	babc	q_{1}

G

Cost: 4

Q \& A

