Conditional Random Fields

CSE 447 / 517

February 17, 2022 (Week 7)
Readings: Eisenstein (2019) 7 and 8

Logistics

- A6 is due tomorrow (Friday 2/18 11:59PM)

Agenda

- Conditional Random Field Review
- Viterbi Algorithm
- Forward Algorithm
- Quiz 6 Solutions
- Q \& A

Task: Sequence Labeling

Problem: Given a sequence, label each element with from a discrete set of labels.
Example: Part-of-Speech tagging

> time flies like an arrow

N, V, Prep, Det, N

Notation: $\left\langle\mathrm{x}_{1} \rightarrow \mathrm{y}_{1}, \mathrm{x}_{2} \rightarrow \mathrm{y}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{y}_{\mathrm{n}}\right\rangle$, each $\mathrm{y}_{\mathrm{i}} \in \mathrm{L}$

Conditional Random Field: Motivation

Previously: Hidden Markov Model (HMM)

Assumptions:

1. y_{i} is conditionally independent of prior states given y_{i-1}
2. Observations x_{i} are conditionally independent of each other and states given y_{i}

Conditional Random Field: Motivation

In general, CRFs do not require these independence assumptions.

Conditional Random Field: Motivation

HMM (generative model) - models joint distribution

$$
\prod_{i=1}^{N} p\left(y_{i} \mid y_{i-1}\right) p\left(x_{i} \mid y_{i}\right)
$$

CRF (discriminative model) - directly models conditional distribution

$$
\prod_{i=1}^{N} p\left(y_{i} \mid y_{i-1}, x_{i}\right) \quad \mathrm{p}(\mathrm{y} \mid \mathrm{x})
$$

Conditional Random Field: Overview

Score function:

$$
\operatorname{Score}(\mathbf{x}, \mathbf{y})=\sum_{i=0}^{n} s\left(\mathbf{x}, i, y_{i}, y_{i+1}\right)
$$

$s\left(\mathbf{x}, i, y_{i}, y_{i+1}\right)$ tells us how good is the label assignments y_{i} and $\mathrm{y}_{\mathrm{i}+1}$ are given "access" to the whole input sequence \mathbf{x} and the position i .

We let y_{0} be the start symbol (START) and $\mathrm{y}_{\mathrm{n}+1}$ be the stop symbol (STOP).

Notation reminder: bold variables are vectors.

Conditional Random Field: Decoding

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$
\begin{aligned}
\hat{\mathbf{y}} & =\operatorname{argmax}_{\mathbf{y}} \operatorname{Score}(\mathbf{x}, \mathbf{y}) \\
& =\operatorname{argmax}_{\left(y_{0}, y_{1}, y_{2} \ldots y_{n+1}\right)} \sum_{i=0}^{n} s\left(\mathbf{x}, i, y_{i}, y_{i+1}\right)
\end{aligned}
$$

Note: these decisions are not local!

Conditional Random Field: Decoding

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$
\begin{aligned}
\hat{\mathbf{y}} & =\operatorname{argmax}_{\mathbf{y}} \operatorname{Score}(\mathbf{x}, \mathbf{y}) \\
& =\operatorname{argmax}_{\left(y_{0}, y_{1}, y_{2} \ldots y_{n+1}\right)} \sum_{i=0}^{n} s\left(\mathbf{x}, i, y_{i}, y_{i+1}\right)
\end{aligned}
$$

```
This is argmax over all possible sequences ( }\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{n}{})\mathrm{ !
```

Note: these decisions are not local!

Conditional Random Field: Decoding

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$
\begin{aligned}
\hat{\mathbf{y}} & =\operatorname{argmax}_{\mathbf{y}} \operatorname{Score}(\mathbf{x}, \mathbf{y}) \\
& =\operatorname{argmax}_{\left(y_{0}, y_{1}, y_{2} \ldots y_{n+1}\right)} \sum_{i=0}^{n} s\left(\mathbf{x}, i, y_{i}, y_{i+1}\right)
\end{aligned}
$$

```
This is argmax over all possible sequences ( }\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{n}{})\mathrm{ !
```

Note: these decisions are not local!
Naively: To find $\hat{\mathbf{y}}$, we can iterate over all possible sequences. Given label set size of L and sequence length of n, this is $O\left(L^{\wedge} n\right):$.

Viterbi Algorithm: Overview

Problem: to solve the decoding problem efficiently.
Solution: dynamic programming, specifically, Viterbi algorithm.
Intuition: the best label sequence that end in $\left(y_{i-1}, y_{i}\right)$ (i.e. $\left.y_{1}, y_{2}, y_{3}, \ldots y_{i-1}, y_{i}\right)$ has to have the best prefix $\left(y_{1}, y_{2}, y_{3}, \ldots y_{i-1}\right)$.

Viterbi Algorithm: Recurrence

Let $\Gamma_{i}(y)$ be the score of the best label sequence for $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}\right)$ that ends in y . Define it by recurrence:

$$
\wp_{i}(y)=\max _{y_{i-1} \in \mathcal{L}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right)
$$

Base case: the best possible label sequence for $\left(x_{1}\right)$ that ends in y.

$$
\bigcirc_{1}(y)=s(\boldsymbol{x}, 0, \bigcirc, y)
$$

Viterbi Algorithm: Recurrence

Let $\Gamma_{i}(y)$ be the score of the best label sequence for $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}\right)$ that ends in y . Define it by recurrence:

Base case: the best possible label sequence for $\left(x_{1}\right)$ that ends in y.

$$
\bigcirc_{1}(y)=s(\boldsymbol{x}, 0, \bigcirc, y)
$$

Viterbi Algorithm: Recurrence

Let $\varphi_{i}(y)$ be the score of the best label sequence for $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}\right)$ that ends in y . Define it by recurrence:

Base case: the best possible label sequence for $\left(x_{1}\right)$ that ends in y.

$$
\bigcirc_{1}(y)=s(\boldsymbol{x}, 0, \bigcirc, y)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.
$L\left\{\begin{array}{|c|c|c|c|c|}\hline & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} \\ \hline \ell_{1} & 0_{1}\left(\ell_{1}\right) & & & \\ \hline \ell_{2} & & & & \\ \hline \ell_{3} & & & & \\ \hline\end{array}\right.$

$$
\wp_{1}\left(l_{1}\right)=s\left(\mathbf{x}, 0, \operatorname{START}, l_{1}\right)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

		x_{1}	x_{2}	x_{3}	x_{4}
Label set	ℓ_{1}	$\rho_{1}\left(\ell_{1}\right)$			

$$
\odot_{1}\left(l_{1}\right)=s\left(\mathbf{x}, 0, \operatorname{START}, l_{1}\right)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

Input sequence with 4 tokens					
		X_{1}	x_{2}	X_{3}	X_{4}
Label set	ℓ_{1}	$\bigcirc_{1}\left(\ell_{1}\right)$			
L	$\ell 2$				
	ℓ_{3}				

$$
\odot_{1}\left(l_{1}\right)=s\left(\mathbf{x}, 0, \operatorname{START}, l_{1}\right)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

$$
\bigcirc_{1}\left(l_{1}\right)=s\left(\mathbf{x}, 0, \operatorname{START}, l_{1}\right)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.
$L\left\{\begin{array}{|c|c|c|c|c|}\hline & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} \\ \hline \ell_{1} & 0_{1}\left(\ell_{1}\right) & & & \\ \hline \ell_{2} & 0_{1}\left(\ell_{2}\right) & & & \\ \hline \ell_{3} & 0_{1}\left(\ell_{3}\right) & & & \\ \hline\end{array}\right.$

$$
\wp_{1}\left(l_{1}\right)=s\left(\mathbf{x}, 0, \operatorname{START}, l_{1}\right)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.
$L\left\{\begin{array}{|c|c|c|c|c|}\hline & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} \\ \hline \ell_{1} & 0_{1}\left(\ell_{1}\right) & o_{2}\left(\ell_{1}\right) & & \\ \hline \ell_{2} & o_{1}\left(\ell_{2}\right) & & & \\ \hline \ell_{3} & \rho_{1}\left(\ell_{3}\right) & & & \\ \hline\end{array}\right.$

$$
\wp_{2}\left(l_{1}\right)=\max _{y \in L} s\left(\mathbf{x}, 1, y, l_{1}\right)+\bigodot_{1}(y)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

$$
\nabla_{2}\left(l_{1}\right)=\max _{y \in L} \mid s\left(\mathbf{x}, 1, y, l_{1}\right)+\nabla_{1}(y)
$$

How good is the label pair y and ℓ_{1} at position 1 and 2 ?

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

$$
\wp_{2}\left(l_{1}\right)=\max _{y \in L} \mid s\left(\mathbf{x}, 1, y, l_{1}\right)+\wp_{1}(y)
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.
$L\left\{\begin{array}{|c|c|c|c|}\hline & x_{1} & x_{2} & x_{3} \\ \hline \ell_{1} & O_{1}\left(\ell_{1}\right) & \mathrm{x}_{4} \\ \hline \ell_{2} & O_{2}\left(\ell_{1}\right) & & \\ \hline \theta_{1}\left(\varepsilon_{2}\right) & & & \\ \hline \ell_{3} & O_{1}\left(\xi_{3}\right) & & \\ \hline\end{array}\right.$

$$
\odot_{2}\left(l_{1}\right)=\max _{y \in L} s\left(\mathbf{x}, 1, y, l_{1}\right)+\wp_{1}(y)
$$

Good news! We have both of these!

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.
$L\left\{\begin{array}{|c|c|c|c|c|}\hline & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} \\ \hline \ell_{1} & \rho_{1}\left(\ell_{1}\right) & \rho_{2}\left(\ell_{1}\right) & & \\ \hline \ell_{2} & \rho_{1}\left(\ell_{2}\right) & & & \\ \hline \ell_{3} & \rho_{1}\left(\ell_{3}\right) & & & \\ \hline\end{array}\right.$

$$
\begin{gathered}
\bigcirc_{2}\left(l_{1}\right)=\max _{y \in L} s\left(\mathbf{x}, 1, y, l_{1}\right)+\odot_{1}(y) \\
\mathrm{b}_{2}\left(l_{1}\right)=\operatorname{argmax}_{y \in L} s\left(\mathbf{x}, 1, y, l_{1}\right)+\odot_{1}(y)
\end{gathered}
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.
$L\left\{\begin{array}{|c|c|c|c|c|}\hline & x_{1} & x_{2} & x_{3} & x_{4} \\ \hline \ell_{1} & 0_{1}\left(\ell_{1}\right) & \frac{0_{2}\left(\ell_{1}\right)}{\operatorname{bo} \ell_{2}\left(\ell_{1}\right)} & & \\ \hline \ell_{2} & 0_{1}\left(\ell_{2}\right) & & & \\ \hline \ell_{3} & 0_{1}\left(\ell_{3}\right) & & & \\ \hline\end{array}\right.$

$$
\begin{gathered}
\cap_{2}\left(l_{1}\right)=\max _{y \in L} s\left(\mathbf{x}, 1, y, l_{1}\right)+\cap_{1}(y) \\
\operatorname{bp}_{2}\left(l_{1}\right)=\operatorname{argmax}_{y \in L} s\left(\mathbf{x}, 1, y, l_{1}\right)+\wp_{1}(y) \quad \begin{array}{c}
\text { Just keep track of } \\
\text { which label y gave us } \\
\text { the best score! }
\end{array}
\end{gathered}
$$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

	x_{1}	x_{2}	x_{3}	x_{4}
ℓ_{1}	$O_{1}\left(\ell_{1}\right)$	$\begin{gathered} o_{2}\left(l_{1}\right) \\ \operatorname{bp}_{2}\left(l_{1}\right) \end{gathered}$	$\begin{gathered} g_{3}\left(e_{1}\right) \\ \mathrm{p}_{3}\left(l_{1}\right) \end{gathered}$	$\begin{gathered} o_{4}\left(e_{1}\right) \\ \mathrm{p}_{4}\left(e_{1}\right) \end{gathered}$
ℓ_{2}	$O_{1}\left(\ell_{2}\right)$	$\begin{gathered} o_{2}\left(l_{2}\right) \\ \mathrm{bp}_{2}\left(e_{2}\right) \end{gathered}$	$\begin{gathered} g_{3}\left(P_{2}\right) \\ \mathrm{bp}_{3}\left(\mathrm{l}_{2}\right) \end{gathered}$	$\begin{aligned} & 9_{4}\left(f_{2}\right) \\ & \mathrm{bp}_{4}\left(r_{2}\right) \end{aligned}$
ℓ_{3}	$O_{1}\left(\ell_{3}\right)$	$\begin{gathered} 9_{2}\left(l_{3}\right) \\ \mathrm{bp}_{2}\left(l_{3}\right) \end{gathered}$	$\begin{aligned} & g_{3}\left(P_{2}\right) \\ & \mathrm{bP}_{3}\left(\mathrm{l}_{3}\right) \end{aligned}$	$\begin{gathered} o_{4}\left(\xi_{3}\right) \\ \mathrm{bp}_{4}\left(\xi_{3}\right) \end{gathered}$

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

	x_{1}	x_{2}	x_{3}	x_{4}	
ℓ_{1}	$O_{1}\left(l_{1}\right)$	$\begin{gathered} \mathcal{O}_{2}\left(\ell_{1}\right) \\ \mathrm{bp}_{2}\left(\ell_{1}\right) \end{gathered}$	$\begin{aligned} & o_{3}\left(\ell_{1}\right) \\ & \mathrm{bp}_{3}\left(\ell_{1}\right) \end{aligned}$	$\begin{gathered} o_{4}\left(l_{1}\right) \\ \operatorname{bp}_{4}\left(R_{1}\right) \end{gathered}$	
ℓ_{2}	$O_{1}\left(\ell_{2}\right)$	$\begin{aligned} & O_{2}\left(\ell_{2}\right) \\ & \mathrm{bp}_{2}\left(\ell_{2}\right) \end{aligned}$	$\begin{aligned} & \sigma_{3}\left(l_{2}\right) \\ & \mathrm{bp}_{3}\left(\ell_{2}\right) \end{aligned}$	$\begin{gathered} o_{4}\left(f_{2}\right) \\ \operatorname{bp}_{4}\left(\sum_{2}\right) \end{gathered}$	C_{5} (STOP)
ℓ_{3}	$O_{1}\left(l_{3}\right)$	$\begin{aligned} & g_{2}\left(l_{2}\right) \\ & \mathrm{bp}_{2}\left(l_{3}\right) \end{aligned}$	$\begin{gathered} g_{3}\left(l_{3}\right) \\ \mathrm{bp}_{3}\left(l_{2}\right) \end{gathered}$	$\begin{gathered} 9_{4}\left(e_{2}\right) \\ \mathrm{bp}_{4}\left(e_{2}\right) \end{gathered}$	$\mathrm{bp}_{5}($ STOP)
STOP	1	1	1	1	
$\begin{aligned} \varphi_{5}(\mathrm{STOP}) & =\max _{y \in L} s(\mathbf{x}, 4, y, \mathrm{STOP})+{\varphi_{4}(y)} \\ & =\max _{\mathbf{y}} \operatorname{Score}(\mathbf{x}, \mathbf{y}) \end{aligned}$					

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

	x_{1}	x_{2}	x_{3}	x_{4}	
ℓ_{1}	$O_{1}\left(\ell_{1}\right)$	$\begin{gathered} C_{2}\left(l_{1}\right) \\ \mathrm{bp}_{2}\left(l_{1}\right) \end{gathered}$	$\begin{gathered} o_{3}\left(\ell_{1}\right) \\ \mathrm{bp}_{3}\left(\ell_{1}\right) \end{gathered}$	$\begin{gathered} D_{4}\left(l_{1}\right) \\ \mathrm{bP}_{4}\left(\ell_{1}\right) \end{gathered}$	
$\ell 2$	$\omega_{1}\left(\ell_{2}\right)$	$\begin{gathered} C_{2}\left(l_{2}\right) \\ \mathrm{bp}_{2}\left(\ell_{2}\right) \end{gathered}$	$\begin{gathered} \rho_{3}\left(l_{2}\right) \\ \mathrm{bp}_{3}\left(\ell_{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{o}_{4}\left(\ell_{2}\right) \\ \mathrm{bp}_{4}\left(\ell_{2}\right) \end{gathered}$	O_{5} (STOP)
ℓ_{3}	$\rho_{1}\left(\ell_{3}\right)$	$\begin{gathered} \rho_{2}\left(l_{3}\right) \\ \mathrm{bp}_{2}\left(l_{3}\right) \end{gathered}$	$\begin{gathered} Q_{3}\left(\ell_{3}\right) \\ \mathrm{bp}_{3}\left(\ell_{3}\right) \end{gathered}$	$\begin{gathered} \nabla_{4}\left(l_{3}\right) \\ \mathrm{bp}_{4}\left(l_{3}\right) \end{gathered}$	bp_{5} (STOP)
STOP	1	1	1	1	
$\begin{aligned} \Gamma_{5}(\mathrm{STOP}) & =\max _{y \in L} s(\mathbf{x}, 4, y, \mathrm{STOP})+\bigcirc_{4}(y) \\ & =\max _{\mathbf{y}} \operatorname{Score}(\mathbf{x}, \mathbf{y}) \end{aligned}$					

Viterbi Algorithm in Action

Fill out this table from left to right, and backtrack from right to left.

	x_{1}	x_{2}	x_{3}	x_{4}	
ℓ_{1}	$\rho_{1}\left(\ell_{1}\right)$	$\begin{gathered} \mathrm{C}_{2}\left(l_{1}\right) \\ \mathrm{bp}_{2}\left(l_{1}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{3}\left(l_{1}\right) \\ \mathrm{bp}_{3}\left(\ell_{1}\right) \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}\left(l_{1}\right) \\ \mathrm{bp}_{4}\left(l_{1}\right) \end{gathered}$	
$\ell 2$	$\rho_{1}\left(\ell_{2}\right)$	$\begin{gathered} \mathrm{O}_{2}\left(l_{2}\right) \\ \mathrm{bp}_{2}\left(l_{2}\right) \end{gathered}$	$\begin{gathered} \rho_{3}\left(l_{2}\right) \\ \mathrm{bp}_{3}\left(\ell_{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{4}\left(\ell_{2}\right) \\ \mathrm{bp}_{4}\left(\ell_{2}\right) \end{gathered}$	O_{5} (STOP)
ℓ_{3}	$\rho_{1}\left(\ell_{3}\right)$	$\begin{gathered} O_{2}\left(l_{3}\right) \\ \mathrm{bp}_{2}\left(\ell_{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}\left(\ell_{3}\right) \\ \mathrm{bp}_{3}\left(\ell_{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{4}\left(\ell_{3}\right) \\ \mathrm{bp}_{4}\left(\ell_{3}\right) \end{gathered}$	bp_{5} (STOP)
STOP	1	1	1		

Viterbi Algorithm: Performance

Assume $\mathrm{s}\left(\mathrm{x}, \mathrm{i}, \mathrm{y}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}}\right)$ is constant time and space.

- Space: O(nL)
- All we need in this case is to fill in the data structure.
- It is a table with $\mathrm{O}(\mathrm{n})$ columns and $\mathrm{O}(\mathrm{L})$ rows.
- Runtime: $\mathrm{O}\left(\mathrm{nL}^{2}\right)$
- O(L): For each cell, we need to find max /
 argmax over label set L.
- There are $\mathrm{O}(\mathrm{nL})$ cells.

Remark: $\mathrm{s}\left(\mathbf{x}, \mathrm{i}, \mathrm{y}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}}\right)$ is often not constant time and space.

Conditional Random Field: Decoding

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$
\begin{aligned}
\hat{\mathbf{y}} & =\operatorname{argmax}_{\mathbf{y}} \operatorname{Score}(\mathbf{x}, \mathbf{y}) \\
& =\operatorname{argmax}_{\left(y_{0}, y_{1}, y_{2} \ldots y_{n+1}\right)} \sum_{i=0}^{n} s\left(\mathbf{x}, i, y_{i}, y_{i+1}\right)
\end{aligned}
$$

Just use Viterbi!
Runtime: Viterbi $O\left(n^{2}\right)$ vs Naive $O\left(n^{L}\right)$.

Conditional Random Field: Learning

Training: Given input sequences \mathbf{x} and gold output sequences \mathbf{y}, what is the best θ^{*} such that we maximize $\mathrm{P}(\mathbf{y} \mid \mathbf{x} ; \theta)$ over all observations?

$$
\begin{gathered}
Z(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{y^{\prime} \in \mathcal{Y}(\boldsymbol{x})} \exp \operatorname{Score}\left(\boldsymbol{x}, \boldsymbol{y}^{\prime} ; \boldsymbol{\theta}\right) \\
p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})=\frac{\exp \operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})}{Z(\boldsymbol{x} ; \boldsymbol{\theta})} \\
-\log p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})=-\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})+\log Z(\boldsymbol{x} ; \boldsymbol{\theta})
\end{gathered}
$$

Forward Algorithm: Overview

Problem: We need to compute the partition function $Z(x ; \theta)$ in order to train our CRF model.

$$
Z(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{\boldsymbol{y}^{\prime} \in \mathcal{Y}(\boldsymbol{x})} \exp \operatorname{Score}\left(\boldsymbol{x}, \boldsymbol{y}^{\prime} ; \boldsymbol{\theta}\right)
$$

Solution: Dynamic programming similar to Viterbi algorithm.
Recurrence:

$$
\alpha_{i}\left(y_{i}\right)=\sum_{y_{i-1} \in L} \exp \left(s\left(\mathbf{x}, i-1, y_{i-1}, y\right)\right) \times \alpha_{i-1}\left(y_{i-1}\right)
$$

Forward Algorithm in Action

Input sequence with 4 tokens

$$
\mathrm{a}_{1}\left(l_{1}\right)=e^{s\left(\mathbf{x}, 0, \mathrm{START}, l_{1}\right)}
$$

Forward Algorithm in Action

Forward Algorithm in Action

	x_{1}	x_{2}	x_{3}	x_{4}
ℓ_{1}	$\alpha_{1}\left(\ell_{1}\right)$	$\alpha_{2}\left(\ell_{1}\right)$	$\alpha_{3}\left(\ell_{1}\right)$	$\alpha_{4}\left(\ell_{1}\right)$
ℓ_{2}	$\alpha_{1}\left(\ell_{2}\right)$	$\alpha_{2}\left(\ell_{2}\right)$	$\alpha_{3}\left(\ell_{2}\right)$	$\alpha_{4}\left(\ell_{2}\right)$
ℓ_{3}	$\alpha_{1}\left(\ell_{3}\right)$	$\alpha_{2}\left(\ell_{3}\right)$	$\alpha_{3}\left(\ell_{3}\right)$	$\alpha_{4}\left(\ell_{3}\right)$

Forward Algorithm in Action

	x_{1}	x_{2}	x_{3}	x_{4}	
ℓ_{1}	$\alpha_{1}\left(\ell_{1}\right)$	$\alpha_{2}\left(\ell_{1}\right)$	$\alpha_{3}\left(\ell_{1}\right)$	$\alpha_{4}\left(\ell_{1}\right)$	
ℓ_{2}	$\alpha_{1}\left(\ell_{2}\right)$	$\alpha_{2}\left(\ell_{2}\right)$	$\alpha_{3}\left(\ell_{2}\right)$	$\alpha_{4}\left(\ell_{2}\right)$	α_{5} (STOP)
ℓ_{3}	$\alpha_{1}\left(\ell_{3}\right)$	$\alpha_{2}\left(\ell_{3}\right)$	$\alpha_{3}\left(\ell_{3}\right)$	$\alpha_{4}\left(\ell_{3}\right)$	
STOP	1	1	1		

Forward Algorithm: Performance

Assume $s\left(\mathbf{x}, \mathrm{i}, \mathrm{y}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}}\right)$ is constant time and space.

- Space: $\mathrm{O}(\mathrm{nL})$
- Runtime: $\mathrm{O}\left(\mathrm{nL}^{2}\right)$

Computation at each step is slightly different from Viterbi, but matches complexity

Conditional Random Field: Learning

$$
-\log p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})=-\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})+\log Z(\boldsymbol{x} ; \boldsymbol{\theta})
$$

Use stochastic gradient descent to minimize log loss

Conditional Random Field: Beyond 1st Order

Quiz 6 - Problem 1

You are about to run the Viterbi algorithm using a label set of size 10, on a sequence of length 9; your model is an HMM. The HMM is smoothed, so that $p(x \mid$ $y)>0$ for every vocabulary word x and every label y, and $p\left(y^{\prime} \mid y\right)>0$ for every pair of labels y and y^{\prime}. How many possible full-sequence labelings $\left\langle y_{0}=\right.$ start, y_{1}, y_{2}, y_{3}, $\mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \mathrm{y}_{7}, \mathrm{y}_{8}, \mathrm{y}_{9}, \mathrm{y}_{10}=$ stop \rangle are there?

Note that the start and stop labels are given! Clarification: the 10 labels allowed for regular non-stop-symbol words do not include the start and stop labels.

Quiz 6 - Problem 1

You are about to run the Viterbi algorithm using a label set of size 10, on a sequence of length 9; your model is an HMM. The HMM is smoothed, so that $p(x \mid$ $y)>0$ for every vocabulary word x and every label y, and $p\left(y^{\prime} \mid y\right)>0$ for every pair of labels y and y^{\prime}. How many possible full-sequence labelings $\left\langle y_{0}=\right.$ start, y_{1}, y_{2}, y_{3}, $\mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \mathrm{y}_{7}, \mathrm{y}_{8}, \mathrm{y}_{9}, \mathrm{y}_{10}=$ stop \rangle are there?

Note that the start and stop labels are given! Clarification: the 10 labels allowed for regular non-stop-symbol words do not include the start and stop labels.

9 positions, 10 options for each position -> $10^{9}=1,000,000,000$

Quiz 6 - Problem 2

We know that "time flies like an arrow; fruit flies like a banana". Now let us label each word in the sequence "fruit flies like bananas". For simplicity, we consider three labels $\mathrm{L}=\{\mathrm{N}, \mathrm{V}, \mathrm{O}\}$. We apply Viterbi algorithm to decode the sentence. Compute the values for each blank space and record the back pointer.

Let the score function $\mathrm{s}\left(\mathrm{x}, \mathrm{i}, \mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}-1}\right)=\log \left(\mathrm{e}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{y}_{\mathrm{i}}\right)^{*} \mathrm{q}\left(\mathrm{y}_{\mathrm{i}} \mid \mathrm{y}_{\mathrm{i}-1}\right)\right)^{*}$, where e is the emission probability and q is the transition probability (given on the next slide).

We have the following recurrence: $\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\Upsilon_{i-1}\left(y_{i-1}\right)$
*Note: use natural log!

$q(N \mid S T A R T)=0.6$	$q(N \mid N)=0.4$	$q(N \mid V)=0.5$	$q(N \mid O)=0.7$
$q(V \mid S T A R T)=0.3$	$q(V \mid N)=0.3$	$q(V \mid V)=0.1$	$q(V \mid O)=0.1$
$q(O \mid S T A R T)=0.1$	$q(O \mid N)=0.1$	$q(O \mid V)=0.2$	$q(O \mid O)=0.1$
$q($ STOP \mid START $)=0.0$	$q($ STOP $\mid N)=0.2$	$q($ STOP $\mid V)=0.2$	$q($ STOP $\mid O)=0.1$
	$e($ fruit $\mid N)=0.3$	$e($ fruit $\mid V)=0.1$	$e($ fruit $\mid O)=0.1$
	$e($ flies $\mid N)=0.3$	$e($ flies $\mid V)=0.5$	$e($ flies $\mid O)=0.0$
	$e($ like $\mid N)=0.1$	$e($ like $\mid V)=0.4$	$e($ like $\mid O)=0.3$
	$e($ bananas $\mid N)=0.3$	$e($ bananas $\mid V)=0.0$	$e($ bananas $\mid O)=0.6$

Quiz 6 - Problem 2

$$
\wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\bigodot_{i-1}\left(y_{i-1}\right)
$$

	fruit	flies	like	bananas	
	$\begin{gathered} O_{1}(N)= \\ b p_{1}(N)= \end{gathered}$	$\begin{aligned} & \sigma_{2}(N)= \\ & b p_{2}(N)= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & \Gamma_{1}(\mathrm{~V})= \\ & \mathrm{bp} p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\bigodot_{i-1}\left(y_{i-1}\right)
$$

	fruit	flies	like	bananas	
	$\begin{gathered} O_{1}(N)= \\ b p_{1}(N)= \end{gathered}$	$\begin{aligned} & \sigma_{2}(N)= \\ & b p_{2}(N)= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & \Gamma_{1}(\mathrm{~V})= \\ & \mathrm{bp} p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~N})=\max (\\
& \quad \log (\mathrm{e}(\text { ("fruit"" } \mid \mathrm{N}) * q(\mathrm{~N} \mid \text { START }))+\wp_{0}(\text { START })
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{gathered} \mathrm{O}_{1}(\mathrm{~N})= \\ \mathrm{bp} p_{1}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~N})=\max (\\
& \quad \log (\mathrm{e}(\text { ("fruit"" } \mid \mathrm{N}) * q(\mathrm{~N} \mid \text { START }))+\wp_{0}(\text { START })
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{gathered} \mathrm{O}_{1}(\mathrm{~N})= \\ \mathrm{bp} p_{1}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{3}(\mathrm{~N})= \\ & \mathrm{bp}_{3}(\mathrm{~N})= \end{aligned}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \ominus_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{~V})= \\ & \mathrm{bp}_{4}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~N})=\max (\\
& \quad \log (\mathrm{e}(\text { ("fruit" } \mid \mathrm{N}) * \mathrm{q}(\mathrm{~N} \mid \text { START }))+0
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{gathered} \mathrm{O}_{1}(\mathrm{~N})= \\ \mathrm{bp} p_{1}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{3}(\mathrm{~N})= \\ & \mathrm{bp}_{3}(\mathrm{~N})= \end{aligned}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \ominus_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{~V})= \\ & \mathrm{bp}_{4}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

$q(N \mid S T A R T)=0.6$	$q(N \mid N)=0.4$	$q(N \mid V)=0.5$	$q(N \mid O)=0.7$
$q(V \mid S T A R T)=0.3$	$q(V \mid N)=0.3$	$q(V \mid V)=0.1$	$q(V \mid O)=0.1$
$q(O \mid S T A R T)=0.1$	$q(O \mid N)=0.1$	$q(O \mid V)=0.2$	$q(O \mid O)=0.1$
$q($ STOP \mid START $)=0.0$	$q($ STOP $\mid N)=0.2$	$q($ STOP $\mid V)=0.2$	$q($ STOP $\mid O)=0.1$
	$e($ fruit $\mid N)=0.3$	$e($ fruit $\mid V)=0.1$	$e($ fruit $\mid O)=0.1$
	$e($ flies $\mid N)=0.3$	$e($ flies $\mid V)=0.5$	$e($ flies $\mid O)=0.0$
	$e($ like $\mid N)=0.1$	$e($ like $\mid V)=0.4$	$e($ like $\mid O)=0.3$
	$e($ bananas $\mid N)=0.3$	$e($ bananas $\mid V)=0.0$	$e($ bananas $\mid O)=0.6$

Quiz 6 - Problem 2

$$
\begin{aligned}
& \nabla_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~N})=\max (\\
& \quad \log (0.3 * 0.6)+0
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{gathered} \mathrm{O}_{1}(\mathrm{~N})= \\ \mathrm{bp} p_{1}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \nabla_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\wp_{i-1}\left(y_{i-1}\right)} \\
& \wp_{1}(\mathrm{~N})=\max (\\
& \quad \log (0.18)
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{gathered} \mathrm{O}_{1}(\mathrm{~N})= \\ \mathrm{bp} p_{1}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~N})=\max (\\
& \quad-1.715
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{gathered} \mathrm{O}_{1}(\mathrm{~N})= \\ \mathrm{bp} p_{1}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \circlearrowleft_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~N})=-1.715
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & \Theta_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})= \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})= \\ & b p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \bigcirc_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} p_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \sigma_{3}(\mathrm{O})= \\ & b p_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\varrho_{i-1}\left(y_{i-1}\right)}
$$

The argmax was START.
Note: bp_{1} is always START.

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})= \\ & b p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~V})=\max (\\
& \quad \log (\mathrm{e}(\text { ("fruit"" } \mid \mathrm{V}) * q(\mathrm{~V} \mid \text { START }))+\wp_{0}(\text { START })
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})= \\ & b p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})= \\ & b p_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \circlearrowleft_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\wp_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~V})=\max (\\
& \quad \log (\mathrm{e}(\text { ("fruit"" } \mid \mathrm{V}) * \mathrm{q}(\mathrm{~V} \mid \text { START }))+0
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \sigma_{2}(N)= \\ & b p_{2}(N)= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})= \\ & b p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} p_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

$q(N \mid S T A R T)=0.6$	$q(N \mid N)=0.4$	$q(N \mid V)=0.5$	$q(N \mid O)=0.7$
$q(V \mid$ START $)=0.3$	$q(V \mid N)=0.3$	$q(V \mid V)=0.1$	$q(V \mid O)=0.1$
$q(O \mid S T A R T)=0.1$	$q(O \mid N)=0.1$	$q(O \mid V)=0.2$	$q(O \mid O)=0.1$
$q($ STOP \mid START $)=0.0$	$q($ STOP $\mid N)=0.2$	$q($ STOP $\mid V)=0.2$	$q($ STOP $\mid O)=0.1$
	$e($ fruit $\mid N)=0.3$	$e($ fruit $\mid V)=0.1$	$e($ fruit $\mid O)=0.1$
	$e($ flies $\mid N)=0.3$	$e($ flies $\mid V)=0.5$	$e($ flies $\mid O)=0.0$
	$e($ like $\mid N)=0.1$	$e($ like $\mid V)=0.4$	$e($ like $\mid O)=0.3$
	$e($ bananas $\mid N)=0.3$	$e($ bananas $\mid V)=0.0$	$e($ bananas $\mid O)=0.6$

Quiz 6 - Problem 2

$$
\begin{aligned}
& \nabla_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\wp_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(\mathrm{~V})=\max (\\
& \quad \log \left(0.1^{*} 0.3\right)+0
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})= \\ & \mathrm{bp}_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \nabla_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$$
\sigma_{1}(V)=-3.507
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(N)= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\varrho_{i-1}\left(y_{i-1}\right)}
$$

The argmax was START.
Note: bp_{1} is always START.

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \sigma_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})= \\ & b p_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{O})= \\ \mathrm{bp}_{3}(\mathrm{O})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\left.\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right.}\right)\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$$
\sigma_{1}(O)=\max (
$$

$$
\log (? ? ? ~ * ~ ? ? ?)+? ? ?
$$

)
What would these be?

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{gathered} O_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})= \\ & \mathrm{bp}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & b p_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \nabla_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(O)=\max (\\
& \quad \log (e(\text { ("fruilt" } \mid O) * q(O \mid S T A R T))+\odot_{0}(\text { START })
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & \Gamma_{1}(\mathrm{~N})=-1.715 \\ & b p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{o}_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \mathrm{C}_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & \Gamma_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} V_{4}(V)= \\ b p_{4}(V)= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \nabla_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times q\left(y_{i} \mid y_{i-1}\right)\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(O)=\max (\\
& \quad \log (0.1 * 0.1)+0
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})= \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\wp_{i-1}\left(y_{i-1}\right) \\
& \wp_{1}(O)=-4.605
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\text { START } \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})=-4.605 \\ & b p_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\left.\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right.}\right)\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

The argmax was ???

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\varrho_{i-1}\left(y_{i-1}\right)}
$$

The argmax was START.
Note: bp_{1} is always START.

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$$
\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \xrightarrow{\mathrm{O}_{2}(\mathrm{~N})=\max (} \log (\mathrm{e}(\text { "flies" } \mid \mathrm{N}) * \mathrm{q}(\mathrm{~N} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N}),
$$

)

	fruit	flies	like	bananas	
	$\begin{aligned} & \Theta_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{gathered} \rho_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \odot_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \longrightarrow \mathrm{O}_{2}(\mathrm{~N})=\max ($
$\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log \left(\mathrm{e}(\right.$ "flies" $\left.\mid \mathrm{N}){ }^{*} \mathrm{q}(\mathrm{N} \mid \mathrm{N})\right)+\mathrm{O}_{1}(\mathrm{~N})$,
)

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(N)=-1.715 \\ & b p_{1}(N)=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{o}_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \mathrm{C}_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} V_{4}(V)= \\ b p_{4}(V)= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \quad \mathrm{O}_{2}(\mathrm{~N})=\max ($	
	$\rightarrow \log \left(\mathrm{e}(\right.$ "flies" \| N) * $\mathrm{q}(\mathrm{N} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathbf{N})$,
$y_{i-1}=\mathrm{V}$	$\rightarrow \log \left(\mathrm{e}(\right.$ "flies" \| N$\left.){ }^{*} \mathrm{q}(\mathrm{N} \mid \mathrm{V})\right)+\mathrm{O}_{1}(\mathrm{~V})$,
	$\rightarrow \log (\mathrm{e}($ "flies" \| N $)$ * $\mathrm{q}(\mathrm{N} \mid \mathrm{O}))+\mathrm{O}_{1}(\mathrm{O})$
$\mathrm{y}_{\mathrm{i}-1}=0$	

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~N})= \\ \mathrm{bp}_{2}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \bigcirc_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \ominus_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{aligned} & \Gamma_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \longrightarrow \mathrm{O}_{2}(\mathrm{~N})=\max ($
$\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log (0.3 * 0.4)+-1.715$,
$\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \longrightarrow \log (0.3 * 0.5)+-3.507$,
$\log (0.3 * 0.7)+-4.605$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~V})= \\ & \mathrm{bp}_{2}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(N)=-1.715 \\ & b p_{1}(N)=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{o}_{2}(\mathrm{~N})= \\ & \mathrm{bp}_{2}(\mathrm{~N})= \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \mathrm{C}_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} V_{4}(V)= \\ b p_{4}(V)= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \circlearrowleft_{i}(y)=\max _{y_{i-1} \in L} \log \left(e\left(x_{i} \mid y_{i}\right) \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \bigcirc_{2}(\mathrm{~N})=-3.835 \\
& \operatorname{bp}_{2}(\mathrm{~N})=\mathrm{N}
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(N)=-1.715 \\ & b p_{1}(N)=\text { START } \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \mathrm{C}_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & V_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \quad \mathrm{O}_{2}(\mathrm{~V})=\max ($	
$y_{i-1}=\mathrm{V}$	
= O)

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

```
\(y_{i-1}=\mathrm{N} \quad \quad_{2}(\mathrm{~V})=\max (\)
    \(\log (\mathrm{e}(\) "flies" \(\mid \mathrm{V})\) * \(\mathrm{q}(\mathrm{V} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N})\),
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log (\) ??? * ??? \()+\) ???,
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \xrightarrow{ } \log (? ? ?\) * ??? \()+\) ???
```

	fruit	flies	like	bananas	
	$\begin{aligned} & \mathrm{O}_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{O})= \\ \mathrm{bp}_{3}(\mathrm{O})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

```
\(y_{i-1}=\mathrm{N} \quad \quad_{2}(\mathrm{~V})=\max (\)
    \(\log \left(e(\right.\) "flies" | V) * q(V | N ) \()+\mathrm{O}_{1}(\mathrm{~N})\),
\(\mathrm{y}_{\mathrm{i}-1} \mathrm{=} \mathrm{~V} \longrightarrow \log (\mathrm{e}(\) "flies" \(\mid \mathrm{V}) *\) ???) + ???,
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \xrightarrow{ } \log (? ? ?\) * ??? \()+\) ???
```

	fruit	flies	like	bananas	
	$\begin{aligned} & \Theta_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \odot_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \Gamma_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

```
\(y_{i-1}=\mathrm{N} \quad \quad_{2}(\mathrm{~V})=\max (\)
                \(\log \left(e(\right.\) "flies" | V ) * \(q(\mathrm{~V} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N})\),
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log \left(\mathrm{e}(\right.\) "flies" \(\left.\mid \mathrm{V}){ }^{*} \mathrm{q}(\mathrm{V} \mid \mathrm{V})\right)+\) ???,
\(y_{i-1}=\mathrm{O} \xrightarrow{ } \log (\) ??? * ??? \()+\) ???
```

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(N)=-1.715 \\ & b p_{1}(N)=\text { START } \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \Gamma_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \sigma_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

```
\(y_{i-1}=N \quad \rho_{2}(V)=\max (\)
    \(\log \left(e(\right.\) "flies" | V ) * \(q(\mathrm{~V} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N})\),
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log \left(\mathrm{e}(\right.\) "flies" \(\left.\mid \mathrm{V}){ }^{*} \mathrm{q}(\mathrm{V} \mid \mathrm{V})\right)+\mathrm{O}_{1}(\mathrm{~V})\),
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \xrightarrow{ } \log \left(? ? ?{ }^{*}\right.\) ???) + ???
```

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{~N})= \\ & \mathrm{bp}_{3}(\mathrm{~N})= \end{aligned}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \ominus_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

```
\(y_{i-1}=N \quad \rho_{2}(V)=\max (\)
    \(\log \left(e(\right.\) "flies" | V ) * \(q(\mathrm{~V} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N})\),
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log \left(\mathrm{e}(\right.\) "flies" \(\left.\mid \mathrm{V}){ }^{*} \mathrm{q}(\mathrm{V} \mid \mathrm{V})\right)+\mathrm{O}_{1}(\mathrm{~V})\),
\(\left.\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \xrightarrow[)\right]{ } \log (\mathrm{e}(\) "flies" \(\mid \mathrm{V}) * ? ? ?)+\) ???
```

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & b p_{1}(\mathrm{~N})=\text { START } \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \odot_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \sigma_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \sigma_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \sigma_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

```
\(y_{i-1}=N \quad \rho_{2}(V)=\max (\)
    \(\log \left(e(\right.\) "flies" | V ) * \(q(\mathrm{~V} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N})\),
\(\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log \left(\mathrm{e}(\right.\) "flies" \(\left.\mid \mathrm{V}){ }^{*} \mathrm{q}(\mathrm{V} \mid \mathrm{V})\right)+\mathrm{O}_{1}(\mathrm{~V})\),
\(\left.\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \xrightarrow[)\right]{ } \log \left(\mathrm{e}(\text { "flies" } \mid \mathrm{V})^{*} \mathrm{q}(\mathrm{V} \mid \mathrm{O})\right)+\) ???
```

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{~N})= \\ & \mathrm{bp}_{3}(\mathrm{~N})= \end{aligned}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \ominus_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \quad \bigcirc_{2}(\mathrm{~V})=\max ($	
	$\rightarrow \log \left(\mathrm{e}(\right.$ "flies" \| V) * $\mathrm{q}(\mathrm{V} \mid \mathrm{N}))+\mathrm{O}_{1}(\mathrm{~N})$,
$y_{i-1}=\mathrm{V}$	$\rightarrow \log \left(\mathrm{e}(\right.$ "flies" $\left.\mid \mathrm{V}){ }^{*} \mathrm{q}(\mathrm{V} \mid \mathrm{V})\right)+\mathrm{O}_{1}(\mathrm{~V})$,
	$\rightarrow \log (\mathrm{e}($ ("flies" $\mid \mathrm{V}) * \mathrm{q}(\mathrm{V} \mid \mathrm{O}))+\mathrm{O}_{1}(\mathrm{O})$
= O	7

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}, 1(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1}=\mathrm{N} \longrightarrow \mathrm{O}_{2}(\mathrm{~V})=\max ($
$\mathrm{y}_{\mathrm{i}-1}=\mathrm{V} \longrightarrow \log (0.5 * 0.3)+-1.715$,
$\mathrm{y}_{\mathrm{i}-1}=\mathrm{O} \longrightarrow \log (0.5 * 0.1)+-3.507$,

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{V}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & \Theta_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{gathered} \odot_{4}(\mathrm{~N})= \\ \mathrm{bp}_{4}(\mathrm{~N})= \end{gathered}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{gathered} \mathrm{O}_{2}(\mathrm{~V})= \\ \mathrm{bp}_{2}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \Gamma_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \odot_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \bigcirc_{2}(\mathrm{~V})=-3.612 \\
& \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N}
\end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{gathered} \mathrm{V}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \bigcirc_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & \mathrm{O}_{5}(\mathrm{STOP})= \\ & \mathrm{pp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \rho_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

$\mathrm{y}_{\mathrm{i}-1} \mathrm{~N} \quad \mathrm{~N}^{(0)}(\mathrm{O})=\max ($	
	$\rightarrow \log \left(\mathrm{e}\left(\right.\right.$ "flies" \| O $\left.{ }^{\text {* }} \mathrm{q}(\mathrm{O} \mid \mathrm{N})\right)+\mathrm{O}_{1}(\mathrm{~N})$,
$y_{i-1}=V$	$\rightarrow \log (\mathrm{e}($ "flies" $\mid \mathrm{O}) * \mathrm{q}(\mathrm{O} \mid \mathrm{V}))+\mathrm{O}_{1}(\mathrm{~V})$,
	$\rightarrow \log (\mathrm{e}($ "flies" $\mid \mathrm{O}) * \mathrm{q}(\mathrm{O} \mid \mathrm{O}))+\mathrm{O}_{1}(\mathrm{O})$
$y_{i-1}=0$	

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}, 1(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \odot_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} p_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & O_{4}(N)= \\ & b p_{4}(N)= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}, 1(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \odot_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \ominus_{3}(\mathrm{~V})= \\ & \mathrm{bp}_{3}(\mathrm{~V})= \end{aligned}$	$\begin{gathered} \mathrm{V}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & y_{5}(\mathrm{STOP})= \\ & b p_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\Upsilon_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})= \\ & \mathrm{bp}_{2}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

Quiz 6 - Problem 2

$$
\begin{aligned}
& \odot_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\varrho_{i-1}\left(y_{i-1}\right) \\
& \odot_{2}(\mathrm{O})=-\inf \\
& \mathrm{bp}_{2}(\mathrm{O})=\\
end{aligned}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{gathered} \rho_{3}(\mathrm{~N})= \\ \mathrm{bp}_{3}(\mathrm{~N})= \end{gathered}$	$\begin{aligned} & \rho_{4}(\mathrm{~N})= \\ & \mathrm{bp}_{4}(\mathrm{~N})= \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{gathered} \mathrm{O}_{3}(\mathrm{~V})= \\ \mathrm{bp}_{3}(\mathrm{~V})= \end{gathered}$	$\begin{gathered} \mathrm{O}_{4}(\mathrm{~V})= \\ \mathrm{bp}_{4}(\mathrm{~V})= \end{gathered}$	$\begin{aligned} & O_{5}(\mathrm{STOP})= \\ & \mathrm{bp}_{5}(\mathrm{STOP})= \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & \Theta_{2}(\mathrm{O})=-\mathrm{inf} \\ & \mathrm{bp}_{2}(\mathrm{O})=\backslash \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})= \\ & \mathrm{bp}_{3}(\mathrm{O})= \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})= \\ & \mathrm{bp}_{4}(\mathrm{O})= \end{aligned}$	

10 minutes later

Quiz 6 - Problem 2

$$
\wp_{i}(y)=\max _{y_{i-1} \in L} \log \left(\underline{e\left(x_{i} \mid y_{i}\right)} \times \underline{q\left(y_{i} \mid y_{i-1}\right)}\right)+\underline{\Upsilon_{i-1}\left(y_{i-1}\right)}
$$

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{~N})=-7.852 \\ & \mathrm{bp}_{3}(\mathrm{~N})=\mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{~N})=-7.852 \\ & \mathrm{pp}_{4}(\mathrm{~N})=\mathrm{V} \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & b p_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{~V})=-5.955 \\ & b p_{3}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{~V})=-\mathrm{inf} \\ & \mathrm{bp}_{4}(\mathrm{~V})=\mathrm{l} \end{aligned}$	$\begin{aligned} & O_{5}(\text { STOP })=-9.461 \\ & b p_{5}(S T O P)=N \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})=-\mathrm{inf} \\ & \mathrm{bp}_{2}(\mathrm{O})=1 \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})=-6.425 \\ & \mathrm{pp}_{3}(\mathrm{O})=\mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})=-8.075 \\ & \mathrm{pp}_{4}(\mathrm{O})=\mathrm{V} \end{aligned}$	

Quiz 6 - Problem 2

fruit	flies	like	bananas	
$\begin{aligned} & \mathrm{O}_{1}(\mathrm{~N})=\log \left(0.3^{*} 0.6\right)=-1 \\ & .715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{~N})=\max (\\ & \log \left(0.3^{*} 0.4\right)-1.715 \\ & \log \left(0.3^{*} 0.5\right)-3.507 \\ & \left.\log \left(0.3^{*} 0.7\right)-4.605\right)= \\ & -3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{~N})=\max (\\ & \log \left(0.1^{*} 0.4\right)-3.835 \\ & \log \left(0.1^{*} 0.5\right)-3.612, \\ & \left.\log \left(0.1^{*} 0.7\right)-\mathrm{inf}\right)= \\ & -6.608 \\ & \mathrm{bp}_{3}(\mathrm{~N})=0 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{4}(\mathrm{~N})=\max (\\ & \log \left(0.3^{*} 0.4\right)-6.608 \\ & \log \left(0.3^{*} 0.5\right)-5.955 \\ & \left.\log \left(0.3^{*} 0.7\right)-6.425\right)= \\ & -7.852 \\ & \mathrm{bp}_{4}(\mathrm{~N})=\mathrm{V} \end{aligned}$	
$\begin{aligned} & ⿳_{1}(\mathrm{~V})=\log \left(0.1^{*} 0.3\right)=-3 \\ & .507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{~V})=\max (\\ & \log \left(0.5^{*} 0.3\right)-1.715 \\ & \log \left(0.5^{*} 0.1\right)-3.507 \\ & \left.\log \left(0.5^{*} 0.1\right)-4.605\right)= \\ & -3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{3}(\mathrm{~V})=\max (\\ & \log \left(0.4^{*} 0.3\right)-3.835 \\ & \log \left(0.4^{*} 0.1\right)-3.612, \\ & \left.\log \left(0.4^{*} 0.1\right)-\mathrm{inf}\right)= \\ & -5.955 \\ & \mathrm{bp}_{3}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{~V})=\max (\\ & \log (0.0)-6.608, \\ & \log (0.0)-5.955, \\ & \log (0.0)-6.425)=-\mathrm{inf} \\ & \mathrm{bp}_{4}(\mathrm{~V})=1 \end{aligned}$	$\begin{gathered} \mathrm{O}_{5}(\mathrm{STOP})=\max (\\ \log (0.2)-7.852 \\ \log (0.2)-\mathrm{inf} \\ \log (0.1)-8.075)= \\ -9.461 \\ \mathrm{bp}_{5}(\mathrm{STOP})=\mathrm{N} \end{gathered}$
$\begin{aligned} & O_{1}(\mathrm{O})=\log \left(0.1^{*} 0.1\right)=- \\ & 4.605 \\ & \mathrm{bp}_{1}(\mathrm{O})=\text { START } \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{O})=\max (\\ & \log (0.0)-1.715, \\ & \log (0.0)-3.507, \\ & \log (0.0)-4.605)=-\mathrm{inf} \\ & \operatorname{bp2}(\mathrm{O})=1 \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})=\max (\\ & \log \left(0.3^{*} 0.1\right)-3.835, \\ & \log \left(0.3^{*} 0.2\right)-3.612, \\ & \left.\log \left(0.3^{*} 0.1\right)-\mathrm{inf}\right)= \\ & -6.425 \\ & \mathrm{bp}_{3}(\mathrm{O})=\mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})=\max (\\ & \log \left(0.6^{*} 0.1\right)-6.608 \\ & \log \left(0.6^{*} 0.2\right)-5.955, \\ & \left.\log \left(0.6^{*} 0.1\right)-6.425\right)= \\ & -8.075 \\ & \mathrm{bp}_{4}(\mathrm{O})=\mathrm{V} \end{aligned}$	

Quiz 6 - Problem 3

What is the decoded label sequence? Divide labels by space in your answer, e.g. (V V N O).

Quiz 6 - Problem 3

What is the decoded label sequence? Divide labels by space in your answer, e.g. (V V N O).

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(N)=-3.835 \\ & b p_{2}(N)=N \end{aligned}$	$\begin{aligned} & O_{3}(N)=-7.852 \\ & b p_{3}(N)=O \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{~N})=-7.852 \\ & \mathrm{bp}_{4}(\mathrm{~N})=\mathrm{V} \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp} p_{1}(\mathrm{~V})=\mathrm{START} \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{~V})=-5.955 \\ & \mathrm{pp}_{3}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & V_{4}(\mathrm{~V})=-\mathrm{inf} \\ & \mathrm{bp}_{4}(\mathrm{~V})=1 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{5}(\mathrm{STOP})=-9.461 \\ & b p_{5}(\mathrm{STOP})=\mathrm{N} \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & b p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})=-\mathrm{inf} \\ & \mathrm{bp}_{2}(\mathrm{O})=1 \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})=-6.425 \\ & b p_{3}(\mathrm{O})=\mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})=-8.075 \\ & \mathrm{bp}_{4}(\mathrm{O})=\mathrm{V} \end{aligned}$	

Quiz 6 －Problem 3

What is the decoded label sequence？Divide labels by space in your answer，e．g． （ V V N O）．

Follow the backpointer！

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp}_{1}(\mathrm{~N})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{aligned} & ⿳_{3}(\mathrm{~N})=-7.852 \\ & \mathrm{bp}_{3}(\mathrm{~N})=\mathrm{O} \end{aligned}$	$\begin{aligned} & ⿳_{4}(\mathrm{~N})=-7.852 \\ & \mathrm{pp}_{4}(\mathrm{~N})=\mathrm{V} \end{aligned}$	
$\varphi_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp}_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{aligned} & ⿳_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \rho_{3}(\mathrm{~V})=-5.955 \\ & b p_{3}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & ⿳_{4}(\mathrm{~V})=-\mathrm{inf} \\ & \mathrm{bp}_{4}(\mathrm{~V})=1 \end{aligned}$	$\begin{aligned} & \rho_{5}(\text { STOP })=-9.461 \\ & b p_{5}(\text { STOP })=N \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & b p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})=-\mathrm{inf} \\ & \mathrm{bp}_{2}(\mathrm{O})=\mathrm{l} \end{aligned}$	$\begin{aligned} & ⿳_{3}(\mathrm{O})=-6.425 \\ & \mathrm{bp}_{3}(\mathrm{O})=\mathrm{V} \end{aligned}$	$\begin{aligned} & ⿳_{4}(\mathrm{O})=-8.075 \\ & \mathrm{bp}_{4}(\mathrm{O})=\mathrm{V} \end{aligned}$	

Quiz 6 - Problem 3

What is the decoded label sequence? Divide labels by space in your answer, e.g. (V V N O).

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \sigma_{2}(N)=-3.835 \\ & \mathrm{bp}_{2}(N)=N \end{aligned}$	$\begin{aligned} & O_{3}(\mathrm{~N})=-7.852 \\ & \mathrm{bp}_{3}(\mathrm{~N})=\mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{~N})=-7.852 \\ & \mathrm{bp}_{4}(\mathrm{~N})=\mathrm{V} \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp} p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{aligned} & O_{2}(\mathrm{~V})=-3.612 \\ & b p_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \sigma_{3}(\mathrm{~V})=-5.955 \\ & b p_{3}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{4}(\mathrm{~V})=-\mathrm{inf} \\ & \mathrm{bp}_{4}(\mathrm{~V})=1 \end{aligned}$	$\begin{aligned} & \Gamma_{5}(\text { STOP })=-9.461 \\ & b p_{5}(S T O P)=N \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})=-\mathrm{inf} \\ & \mathrm{bp}_{2}(\mathrm{O})=1 \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})=-6.425 \\ & \mathrm{bp}_{3}(\mathrm{O})=\mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4}(\mathrm{O})=-8.075 \\ & \mathrm{pp}_{4}(\mathrm{O})=\mathrm{V} \end{aligned}$	

Quiz 6 - Problem 3

What is the decoded label sequence? Divide labels by space in your answer, e.g. (V V N O).

	fruit	flies	like	bananas	
	$\begin{aligned} & O_{1}(\mathrm{~N})=-1.715 \\ & \mathrm{bp} \mathrm{p}_{1}(\mathrm{~N})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \odot_{2}(\mathrm{~N})=-3.835 \\ & \mathrm{bp}_{2}(\mathrm{~N})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{~N})=-7.852 \\ & \mathrm{pp}_{3}(\mathrm{~N})=\mathrm{O} \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{~N})=-7.852 \\ & \mathrm{bp}_{4}(\mathrm{~N})=\mathrm{V} \end{aligned}$	
$\bigcirc_{0}($ START $)=0$	$\begin{aligned} & O_{1}(\mathrm{~V})=-3.507 \\ & \mathrm{bp} p_{1}(\mathrm{~V})=\text { START } \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{~V})=-3.612 \\ & \mathrm{bp}_{2}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{3}(\mathrm{~V})=-5.955 \\ & b p_{3}(\mathrm{~V})=\mathrm{N} \end{aligned}$	$\begin{aligned} & 5_{4}(\mathrm{~V})=-\mathrm{inf} \\ & \mathrm{bp}_{4}(\mathrm{~V})=\mathrm{l} \end{aligned}$	$\begin{aligned} & O_{5}(\text { STOP })=-9.461 \\ & b p_{5}(S T O P)=N \end{aligned}$
	$\begin{aligned} & O_{1}(\mathrm{O})=-4.605 \\ & \mathrm{bp} p_{1}(\mathrm{O})=\mathrm{START} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{O})=-\mathrm{inf} \\ & \mathrm{bp}_{2}(\mathrm{O})=1 \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3}(\mathrm{O})=-6.425 \\ & \mathrm{p}_{3}(\mathrm{O})=\mathrm{V} \end{aligned}$	$\begin{aligned} & O_{4}(\mathrm{O})=-8.075 \\ & \mathrm{bp}_{4}(\mathrm{O})=\mathrm{V} \end{aligned}$	

Quiz 6 - Problem 3

What is the decoded label sequence? Divide labels by space in your answer, e.g. ($\mathrm{V} V \mathrm{~N} \mathrm{O}$).
$\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline & \text { fruit } & \text { flies } & \text { like } & \text { bananas }\end{array}\right] \begin{array}{l}O_{4}(\mathrm{~N})=-7.852 \\ \mathrm{bp}(\mathrm{N})=\mathrm{V}\end{array}\right]$

Quiz 6 - Problem 3

What is the decoded label sequence? Divide labels by space in your answer, e.g. (V V N O).

Q \& A

