Machine Translation

CSE 447 / 517
March 3rd, 2022 (Week 9)

Logistics

- A8 due is due tomorrow (Friday, March 4th)

Agenda

- Beam Search
- IBM Model 1
- EM algorithm
- IBM Model 2
- Quiz 8
- Q\&A

Beam search decoding

- Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
- k is the beam size (in practice around 5 to 10)
- A hypothesis y_{1}, \ldots, y_{t} has a score which is its log probability: $\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\log P_{\mathrm{LM}}\left(y_{1}, \ldots, y_{t} \mid x\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$
- Scores are all negative, and higher score is better
- We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam search decoding: example

Beam size $=\mathbf{k}=\mathbf{2}$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Beam search decoding: example

Beam size $=\mathbf{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Beam search decoding: example

Beam size $=\mathbf{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Of these k^{2} hypotheses, just keep k with highest scores

Beam search decoding: example

Beam size $=\mathbf{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Beam search decoding: example

Beam size $=\mathbf{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Beam search decoding: example

Beam size $=\mathbf{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Beam search decoding: example

Beam size $=\mathbf{k}=\mathbf{2}$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Quiz 8: FOL

Select all the correct translation of following sentences into FOL using the key below:

G: ... is guilty
C: ... is a criminal
L: ... loves...

Quiz 8: FOL

Not every criminal is innocent.
$\neg \forall x(C(x) \Rightarrow \neg G(x))$
$\exists x(C(x) \wedge G(x))$

Quiz 8: FOL

Not every criminal is innocent.

$$
\neg \forall x(C(x) \Rightarrow \neg G(x))
$$

$$
\exists x(C(x) \wedge G(x))
$$

They are logically equivalent - so both is correct

Quiz 8: FOL

Nobody loves anybody who loves nobody.
$\forall x(\forall y \neg L(x, y) \Rightarrow \forall z \neg L(z, x))$
$\forall x(\forall y \neg L(x, y) \Rightarrow \neg \exists z L(z, x))$
$\forall x(\forall y \neg L(x, y) \Rightarrow \neg \forall z L(z, x))$

Quiz 8: FOL

Nobody loves anybody who loves nobody.

$$
\begin{aligned}
& \forall x(\forall y \neg L(x, y) \Rightarrow \forall z \neg L(z, x)) \longrightarrow \begin{array}{l}
\text { Logically } \\
\text { correct }
\end{array} \\
& \forall x(\forall y \neg L(x, y) \Rightarrow \neg \exists z L(z, x)) \\
& \forall x(\forall y \neg L(x, y) \Rightarrow \neg \forall z L(z, x))
\end{aligned}
$$

NLP Task: Machine Translation

Mr President , Noah's ark was filled not with production factors , but with living creatures
(From Language X)

Noahs Arche war nicht voller Produktionsfaktoren, sondern Geschöpfe . (To Language Y)

The Noisy Channel Model

Language $X \quad$ Language Y

We want to translate Language X into Language Y.

The Noisy Channel Model

Imagine there is a source that generates Language Y. But then it is passed through some channel, and we observe Language X on the other side of the channel.

The Noisy Channel Model

Source
Language Y

Imagine there is a source that generates Language Y. But then it is passed through some channel, and we observe Language X on the other side of the channel.

$$
\begin{aligned}
y^{*} & =\operatorname{argmax}_{y} \mathbf{p}(y \mid x) \\
& =\operatorname{argmax}_{y} \mathbf{p}(x \mid y) \cdot \mathbf{p}(y)
\end{aligned}
$$

The Noisy Channel Model

Source
Language Y

Imagine there is a source that generates Language Y. But then it is passed through some channel, and we observe Language X on the other side of the channel.

$$
\begin{aligned}
y^{*} & =\operatorname{argmax}_{y} \mathbf{p}(y \mid x) \\
& =\operatorname{argmax}_{y} \mathbf{p}(x \mid y) \cdot p(y)
\end{aligned}
$$

Channel model, captures the faithfulness of the translation.

The Noisy Channel Model

Refer to this when you get lost which is which!

IBM Model 1 - Motivation

\square \longmapsto \qquad \longmapsto

Mr President, Noah's ark was filled not with production factors, but with living creatures

Noahs Arche war nicht voller Produktionsfaktoren, sondern Geschöpfe .

IBM Model 1: What is the mapping from each token in Language X to Language Y ?

IBM Model 1 - Alignment

IBM Model 1: What is the mapping from each token in Language X to Language Y ?
Let I be the length of \mathbf{y} and m be the length of x .
Latent variable $\mathrm{a}=\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\rangle$, each a_{i} ranging over $\{0, \ldots, \|\}$ (positions in y).

$$
a_{i}=j
$$

IBM Model 1 - Alignment

IBM Model 1: What is the mapping from each token in Language X to Language Y ?
Let I be the length of y and m be the length of x.
Latent variable $\mathrm{a}=\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\rangle$, each a_{i} ranging over $\{0, \ldots, l\}$ (positions in y).

\qquad

IBM Model 1

\qquad \longmapsto

Mr President , Noah's ark was filled not with production factors, but with living creatures .

IBM Model 1: What is the mapping from each token in Language X to Language Y ?
\qquad

IBM Model 1

\qquad \longmapsto

Mr President , Noah's ark was filled not with production factors, but with living creatures

Noahs Arche war nicht voller Produktionsfaktoren, sondern Geschöpfe .

IBM Model 1: What is the mapping from each token in Language X to Language Y ?

$$
\mathbf{a}=[0,0,0,1,
$$

???
]

IBM Model 1

\qquad
\qquad

Mr President , Noah's ark was filled not with production factors, but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren, sondern Geschöpfe .

IBM Model 1: What is the mapping from each token in Language X to Language Y ?

$$
\mathbf{a}=[0,0,0,1,2,3,5,4,0,6,6,7,8,0,0,9,10]
$$

IBM Model 1

Our channel model:

$$
\boldsymbol{p}(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathbf{a} \in\{0, \ldots l\}^{m}} \boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta})
$$

IBM Model 1

Our channel model:

$$
p(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathrm{a} \in\{0, \ldots\}^{m \prime \prime}} p(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})
$$

Marginalized over all possible a vectors.
\qquad
IBM Model 1

Our channel model:

$$
\boldsymbol{p}(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathbf{a} \in\{0, \ldots l\}^{m}} \boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})
$$

where

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} \boldsymbol{p}\left(a_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid y_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

IBM Model 1

Our channel model:

$$
p(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathrm{a} \in\{0, \ldots 1\}^{\prime \prime}} p(\mathrm{x}, \mathrm{a} \mid \mathrm{y}, m ; \boldsymbol{\theta})
$$

Go through every position in \mathbf{x}.
where

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta}) & =\prod_{\prod_{i=0}^{m}}^{m} p\left(a_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid \boldsymbol{y}_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{1}{l+1} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

IBM Model 1

Our channel model:

$$
\boldsymbol{p}(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathbf{a} \in\{0, \ldots l\}^{m}} \boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})
$$

How likely is the current alignment without regard to the text?
where

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} p\left(a_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid y_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{1}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

IBM Model 1

Our channel model:

$$
\boldsymbol{p}(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathbf{a} \in\{0, \ldots l\}^{m}} \boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})
$$

How likely is the current alignment with regard to the text?
where

$$
\begin{aligned}
p(\mathrm{x}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} p\left(a_{i} \mid i, l, m\right) \quad p\left(x_{i} \mid y_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{1}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

IBM Model 1

Our channel model:

$$
\boldsymbol{p}(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathbf{a} \in\{0, \ldots l\}^{m}} \boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})
$$

where

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} \boldsymbol{p}\left(a_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid \boldsymbol{y}_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

IBM Model 1

Our channel model:

$$
\boldsymbol{p}(\mathrm{x} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\sum_{\mathbf{a} \in\{0, . . l\}^{m}} \boldsymbol{p}(\mathrm{x}, \mathrm{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})
$$

where

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} \boldsymbol{p}\left(a_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid \boldsymbol{y}_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{1}{l+1} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

\qquad

IBM Model 1

\qquad
\qquad

$$
p(\mathrm{x}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
$$

Mr President, Noah's ark was filled not with production factors, but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren, sondern Geschöpfe .
$p(\mathrm{X}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta})=\frac{1}{1+10} \cdot \boldsymbol{\theta}_{M r|n u l|}+\ldots$

IBM Model 1 - Learning

$$
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})=\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid v_{a_{i}}}
$$

IBM Model 1 - Learning

$$
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})=\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{\boldsymbol{x}_{i} \mid y_{a_{u}}}
$$

How do we estimate this?

IBM Model 1 - Learning

$$
\boldsymbol{p (x ,}, \mathbf{a} \mid \mathbf{y}, m ; \boldsymbol{\theta})=\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
$$

The problem: we don't know the alignments ahead of time. So we can't apply MLE to find the parameter.

The solution: expectation maximization.
\qquad

Expectation Maximization

Goal: finding $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$
Step 1: initialize ${ }^{\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}}$ with some value.
Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a}}$ to estimate "soft" alignments.
Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.
Step 4: repeat from 2!

Expectation Maximization

\qquad

Goal: finding $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$.
Step 1: initialize $\theta_{x_{i} \mid y_{a_{i}}}$ with some value.
Step 2: use $\theta_{x_{i} \mid y_{a_{i}}}$ to estimate "soft" alignments.
Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.
Step 4: repeat from 2!

Expectation Maximization

Goal: finding $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$.
Step 1: initialize ${ }^{\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}}$ with some value.
Step 2: use $\theta_{x_{i} \mid y_{a_{i}}}$ to estimate "soft" alignments.
Step 3: estimate ${ }^{\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}} \text { with MLE principle. }}$
Step 4: repeat from 2!

Expectation Maximization

Source \longleftrightarrow Language Y \qquad Channel

Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ to estimate "soft" alignments: $q_{i}(j)=p\left(a_{i}=j ; \boldsymbol{\theta}\right)$.

$$
\boldsymbol{q}_{i}(j) \leftarrow \frac{\boldsymbol{\theta}_{x_{i} \mid y_{j}}}{\sum_{j^{\prime}=1}^{l} \boldsymbol{\theta}_{x_{i} \mid y_{j^{\prime}}}}
$$

Expectation Maximization

Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ to estimate "soft" alignments: $q_{i}(j)=p\left(a_{i}=j ; \boldsymbol{\theta}\right)$.

What is the likelihood of generating x_{i} given the y_{j} ?

$$
\boldsymbol{q}_{i}(j) \leftarrow \frac{\boldsymbol{\theta}_{x_{i} \mid y_{j}}}{\sum_{j^{\prime}=1}^{l} \boldsymbol{\theta}_{x_{i} \mid y_{j^{\prime}}}}
$$

\qquad

Expectation Maximization

Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ to estimate "soft" alignments: $q_{i}(j)=p\left(a_{i}=j ; \boldsymbol{\theta}\right)$.

What is the likelihood of generating x_{i} given the y_{i} ?

. out of all possible y_{j}^{\prime} that x_{i} could be aligned to.

Expectation Maximization

Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{\sigma_{i}}}$ to estimate "soft" alignments: $q_{i}(j)=p\left(a_{i}=j ; \boldsymbol{\theta}\right)$.

We want a soft assignment for each sample n.

Expectation Maximization

Source \longleftrightarrow Language Y \qquad Channel

Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ to estimate "soft" alignments: $q_{i}(j)=p\left(a_{i}=j ; \boldsymbol{\theta}\right)$.

$$
\boldsymbol{q}_{i}^{(n)}(j) \leftarrow \frac{\left.\boldsymbol{\theta}_{x_{j}^{(n)}}\right) l_{j}^{(n)}}{\sum_{j^{\prime}(n)=1}^{\prime} \boldsymbol{\theta}_{x_{j}^{(n)} \mid y_{j}^{(n)}}^{(n)}}
$$

\qquad

Expectation Maximization

Goal: finding $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$
Step 1: initialize ${ }^{\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}}$ with some value.
Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a}}$ to estimate "soft" alignments.
Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.
Step 4: repeat from 2!

Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x| | v_{0,}}$ with MLE principle.

$$
\hat{\boldsymbol{\theta}}_{x \mid y} \leftarrow \frac{\sum_{\boldsymbol{n}=\mathbf{1}}^{N} \sum_{i: x x_{i}^{(n)}=x} \sum_{j: y_{j}^{(n)}=y} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}{\sum_{\boldsymbol{n}=\mathbf{1}}^{N} \sum_{i=1}^{m^{(n)}} \sum_{j: y_{j}^{(n)}=y} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}
$$

\qquad

Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.

```
Go through all samples in the dataset.
```


Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.

$$
\hat{\boldsymbol{\theta}}_{x \mid y} \leftarrow \frac{\sum_{\boldsymbol{n}=\mathbf{1}}^{\boldsymbol{N}} \sum_{i: x_{i}^{(n)}=x} \sum_{j: y_{j}^{(n)}=\boldsymbol{y}} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}{\sum_{\boldsymbol{n}=\mathbf{1}}^{\boldsymbol{N}} \sum_{i=1}^{m^{(n)}} \sum_{j: y_{j}^{(n)}=y} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}
$$

Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x| | v_{0,}}$ with MLE principle.

\qquad

Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.

$$
\hat{\boldsymbol{\theta}}_{x \mid y} \leftarrow \frac{\sum_{\boldsymbol{n}=1}^{N} \sum_{i: x_{i}^{(n)}=x} \sum_{j: y_{j}^{(n)}=y} \boldsymbol{q}_{i}^{(n)}(\boldsymbol{j})}{\sum_{\boldsymbol{n}=1}^{N} \sum_{i=1}^{m^{(n)}} \sum_{j: y_{j}^{(n)}=\boldsymbol{y}} \boldsymbol{q}_{i}^{(n)}(\mathbf{j})}
$$

Go through all samples in the dataset.

Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.

$$
\hat{\boldsymbol{\theta}}_{x \mid y} \longleftarrow \frac{\sum_{\boldsymbol{n}=1}^{\boldsymbol{N}} \sum_{i: x_{i}^{(n)}=x} \sum_{j: y_{j}^{(n)}=y^{\prime}}^{\sum_{i}^{(\boldsymbol{n})}} \sum_{\boldsymbol{n}=1} \sum_{i=1}^{m} \sum_{j: y_{j}^{(n)}=y^{(n)}} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}{} \begin{aligned}
& \text { Go through every position i. }
\end{aligned}
$$

\qquad

Expectation Maximization

Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid v_{0, i}}$ with MLE principle.

$$
\hat{\boldsymbol{\theta}}_{x \mid y} \leftarrow \frac{\sum_{\boldsymbol{n}=\mathbf{1}}^{N} \sum_{i: x i}^{(n)}=\sum_{j: y_{j}^{(n)}=y} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}{\sum_{\boldsymbol{n}=\mathbf{1}}^{N} \sum_{i=1}^{m^{(n)}} \sum_{j: y_{j}^{(n)}=y} \boldsymbol{q}_{i}^{(\boldsymbol{n})}(\boldsymbol{j})}
$$

How much probability mass is assigned to the word x matching y ?
\qquad

Expectation Maximization

Goal: finding $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$
Step 1: initialize ${ }^{\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}}$ with some value.
Step 2: use $\boldsymbol{\theta}_{x_{i} \mid y_{a}}$ to estimate "soft" alignment.
Step 3: estimate $\boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}$ with MLE principle.
Step 4: repeat from 2!

IBM Model 2

Recall IBM Model 1:

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} \boldsymbol{p}\left(\boldsymbol{a}_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid \boldsymbol{y}_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

\qquad

IBM Model 2

Recall IBM Model 1 :

$$
\begin{aligned}
\boldsymbol{p}(\mathrm{x}, \mathbf{a} \mid \mathrm{y}, m ; \boldsymbol{\theta}) & =\prod_{i=0}^{m} \boldsymbol{p}\left(a_{i} \mid i, l, m\right) \cdot \boldsymbol{p}\left(x_{i} \mid y_{a_{i}} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=0}^{m} \frac{\mathbf{1}}{l+\mathbf{1}} \cdot \boldsymbol{\theta}_{x_{i} \mid y_{a_{i}}}
\end{aligned}
$$

IBM Model 2: removed uniform distortion assumption.

Q \& A

