
Natural Language Processing (CSE 517 & 447):
Conditional Random Fields

Noah Smith
c© 2022

University of Washington
nasmith@cs.washington.edu

Winter 2022

Readings: Eisenstein (2019) 7 and 8

1 / 109

Motivation

Many tasks in NLP can be cast as sequence labeling, where each
token (usually, word) gets its own label. Compare:

I Text classification: 〈x1, x2, . . . , xn〉 7→ y ∈ L
I Sequence labeling: 〈x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn〉, each
yi ∈ L

I Translation: x 7→ y ∈ V∗target

2 / 109

Problems Typically Cast as Sequence Labeling

I supersense tagging (Ciaramita and Johnson, 2003)

I part-of-speech tagging (Church, 1988)

I morphosyntactic tagging (Habash and Rambow, 2005)

I segmentation into words (Sproat et al., 1996) or multiword
expressions (Schneider et al., 2014)

I code switching (Solorio and Liu, 2008)

I dialogue acts (Stolcke et al., 2000)

I spelling correction (Kernighan et al., 1990)

I word alignment (Vogel et al., 1996)

I named entity recognition (Bikel et al., 1999)

I compression (Conroy and O’Leary, 2001)

3 / 109

Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.

4 / 109

Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

5 / 109

Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006)
used a lexicon called WordNet to define 41 semantic classes for
words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own
right! See
http://wordnetweb.princeton.edu/perl/webwn to get
an idea.

6 / 109

http://wordnetweb.princeton.edu/perl/webwn

Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006)
used a lexicon called WordNet to define 41 semantic classes for
words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own
right! See
http://wordnetweb.princeton.edu/perl/webwn to get
an idea.

This represents a coarsening of the annotations in the Semcor
corpus (Miller et al., 1993).

7 / 109

http://wordnetweb.princeton.edu/perl/webwn

Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a

box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can
watch the performance. “the royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible.
“his lying got him into a tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned. “the umpire warned the batter to stay in the
batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with
the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry
stayed in his box to avoid the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the
ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.

8 / 109

Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a

box of spare parts” n.artifact

2. box/loge: private area in a theater or grandstand where a small group can
watch the performance. “the royal box was empty” n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”
 n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible.
“his lying got him into a tight corner” n.state

5. box: a rectangular drawing. “the flowchart contained many boxes” n.shape

6. box/boxwood: evergreen shrubs or small trees n.plant

7. box: any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned. “the umpire warned the batter to stay in the
batter’s box” n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with
the driver” n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry
stayed in his box to avoid the cold” n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the
ear” n.act

11. box/package: put into a box. “box the gift, please” v.contact

12. box: hit with the fist. “I’ll box your ears!” v.contact

13. box: engage in a boxing match. v.competition

9 / 109

Supersense Tagging Example

Clara Harris , one of the guests in the box , stood up and demanded water .

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

N.PERSO
N

N.PERSO
N

N.ARTIFACT

V.M
O

TIO
N

V.CO
M

M
UNI-

CATIO
N

N.SUBSTANCE

B-N.PERSO
N

I-N.PERSO
N

B-N.PERSO
N

B-N.ARTIFACT

B-V.M
O

TIO
N

I-V.M
O

TIO
N

B-V.CO
M

M
UNI-

CATIO
N

B-N.SUBSTANCE

O O O O O O O O O

 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17

labeled spans

BIO encoding

input tokens

10 / 109

Observations
I Lots of subproblems: Which words have supersenses? Which

words group together to form a multiword expression? For
those that do, which supersense?

I Every word’s label depends on the words around it, and their
labels.

I Segmentation problems can be cast as sequence labeling
(Ramshaw and Marcus, 1995):
I Two labels, B and I, if every word must be in some segment
I Three labels, B, I, and O, if some words are to be “discarded”
I Variants for five labels (E for end, S for singleton),

gaps/noncontiguous spans, and nesting, exist.

Concatenate B, I, etc., with labels to get labeled
segmentation.

I Some sequences of labels might be invalid under your
theory/label semantics.

I Evaluation: usually precision, recall, and F1 on labeled
segments.

11 / 109

Big Abstraction: Linguistic Analysis

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.
I Some Y are very specialized, but others, like the one we

discuss here, show up again and again.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I More robust: supervised learning from annotated data
I Today: unsupervised pretraining followed by supervised

finetuning

12 / 109

Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y∈Ln

Score(x,y;θ)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!

13 / 109

Sequence Labeling v. 0: Local Classifiers

Define score of a word xi getting label y ∈ L in context:
score(x, i, y;θ), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y∈L

score(x, i, y;θ)

MLR
= argmax

y∈L
θ>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

14 / 109

Sequence Labeling v. 0: Local Classifiers

Define score of a word xi getting label y ∈ L in context:
score(x, i, y;θ), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y∈L

score(x, i, y;θ)

MLR
= argmax

y∈L
θ>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

Sometimes this works! E.g., one or two-layer neural network on
top of contextual word vectors (which are features of the whole
input x).

15 / 109

Sequence Labeling v. 0: Local Classifiers
Define score of a word xi getting label y ∈ L in context:
score(x, i, y;θ), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y∈L

score(x, i, y;θ)

MLR
= argmax

y∈L
θ>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

Sometimes this works! E.g., one or two-layer neural network on
top of contextual word vectors (which are features of the whole
input x).

We can do better when there are predictable relationships among
labels.

16 / 109

Reflection

If we return to the original formulation,

ŷ = argmax
y∈Ln

Score(x,y;θ),

how can we write “Score” in terms of the notation on the last
slide?

17 / 109

Local Classifiers (v. 0)

Lightweight; no need to learn anything new! But labels can’t affect
each other.

18 / 109

Sequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i−1, y;θ). (From here, we won’t
always write θ, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y∈L

score(x, i, ŷ1:i−1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

19 / 109

Sequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i−1, y;θ). (From here, we won’t
always write θ, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y∈L

score(x, i, ŷ1:i−1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” effects of a mistake can be catastrophic.

20 / 109

Sequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i−1, y;θ). (From here, we won’t
always write θ, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y∈L

score(x, i, ŷ1:i−1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” effects of a mistake can be catastrophic.

There is much literature on methods for training, and for decoding,
with models like this. Important decoding method in NLP: beam
search.

21 / 109

Beam Search for Sequential Classifiers

Input: x (length n), a sequential classifier’s scoring function score,
and beam width k

Let H0 score hypotheses at position 0, defining only H0(〈〉) = 0.
For i ∈ {1, . . . , n}:
I Empty C.
I For each hypothesis ŷ1:i−1 scored by Hi−1:

I For each y ∈ L, place new hypothesis
ŷ1:iy → Hi−1(ŷ1:i−1) + score(x, i, ŷ1:i−1, y) into C.

I Let Hi be the k-best scored elements of C.

Output: best scored element of Hn.

22 / 109

Notes on Beam Search for Sequential Classifiers

I Runtime is O(n2kL), space is O(n2k).

I You can improve runtime (e.g., to O(nkL)) if computation is
shared across different i (often true with neural networks).

I Special cases:
I k = 1 is greedy left-to-right decoding.
I At k = Ln, you’re doing brute force, exhaustive search.

I Generally: no guarantee.

23 / 109

Reflection

Suppose your label set is built out of BIO tags. For an output ŷ to
be well-formed, it suffices to ensure that it contains no “OI” label
bigrams.

How would you modify beam search to guarantee well-formedness?

24 / 109

Sequential Classifiers (v. 1)

Very powerful! Algorithms lack guarantees.

25 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

26 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

y1

y1 ∼ pstart(Y)

27 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1
↑
y1

x1 ∼ pemission(X | y1)

28 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1
↑
y1 → y2

y2 ∼ ptransition(Y | y1)

29 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2
↑ ↑
y1 → y2

x2 ∼ pemission(X | y2)

30 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2
↑ ↑
y1 → y2 → y3

y3 ∼ ptransition(Y | y2)

31 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3
↑ ↑ ↑
y1 → y2 → y3

x3 ∼ pemission(X | y3)

32 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3
↑ ↑ ↑
y1 → y2 → y3 → y4

y4 ∼ ptransition(Y | y3)

33 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
↑ ↑ ↑ ↑
y1 → y2 → y3 → y4

x4 ∼ pemission(X | y4)

34 / 109

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
↑ ↑ ↑ ↑
y1 → y2 → y3 → y4 → 8

y5 ∼ ptransition(Y | y4)

35 / 109

Sequence Labeling v. 2: Hidden Markov Models

By convention, yn+1 = 8 is always the “stop label.”

p(X = x,Y = y) = pstart(y1)·
n∏

i=1

pemission(xi | yi) · ptransition(yi+1 | yi)

ŷ = argmax
y∈Ln

p(Y = y |X = x)

= argmax
y∈Ln

p(X = x,Y = y)

= argmax
y∈Ln

log p(X = x,Y = y)

We can solve the global decoding problem exactly (i.e., find the
model-optimal ŷ) in O(nL2) time and O(nL) space using the
Viterbi algorithm (more later).

36 / 109

HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

37 / 109

HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

38 / 109

HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

pemission is a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).

39 / 109

HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

pemission is a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).

ptransition is exactly a bigram (first-order Markov) model over
labels.

40 / 109

Classical HMMs vs. Classifiers

With classifiers (local or sequential), the hard work is:

I For humans: choosing features or designing a neural
architecture that can learn good features

I For machines: estimating the parameters (typically by SGD);
(in the sequential case) searching for “argmax”

41 / 109

Classical HMMs vs. Classifiers

With classifiers (local or sequential), the hard work is:

I For humans: choosing features or designing a neural
architecture that can learn good features

I For machines: estimating the parameters (typically by SGD);
(in the sequential case) searching for “argmax”

42 / 109

Classical HMMs vs. Classifiers

With classifiers (local or sequential), the hard work is:

I For humans: choosing features or designing a neural
architecture that can learn good features

I For machines: estimating the parameters (typically by SGD);
(in the sequential case) searching for “argmax”

43 / 109

Classical HMMs vs. Classifiers

With classifiers (local or sequential), the hard work is:

I For humans: choosing features or designing a neural
architecture that can learn good features

I For machines: estimating the parameters (typically by SGD);
(in the sequential case) searching for “argmax”

With classical HMMs, the parameters (ptransition , pemission , pstart)
have a closed form if you have labeled data! The hardest part is
implementing the algorithm for choosing the “argmax” label
sequence. Downside:

I You don’t get to design or learn features.

44 / 109

Reflection

The runtime of the model-optimal decoding algorithm for HMMs
depends quadratically on the size of L. For some problems (e.g.,
supersense tagging) the label set can be large. Can you think of a
way to trade the guarantee of model-optimality for speed, while
still using the HMM?

45 / 109

Hidden Markov Models (v. 2)

Algorithmically beautiful; lack of features is unsatisfying.

46 / 109

Sequence Labeling v. 3

To endow HMMs with features, we can replace the “lookup”
probabilities (ptransition , pemission , pstart) with scoring functions.
This idea was explored by Berg-Kirkpatrick et al. (2010).
Classical HMM (v. 2):

ŷ = argmax
y∈Ln

log pstart(y1) +

n∑
i=1

(
log pemission(xi | yi)
+ log ptransition(yi+1 | yi)

)
This approach (v. 3):

ŷ = argmax
y∈Ln

sstart(y1) +
n∑

i=1

semission(xi, yi) + stransition(yi, yi+1)

Each “s” could be a linear scoring function (like in MLR), perhaps
using word or label vectors. For now, I’m hiding the parameters of
each s.

47 / 109

Notes on V. 3

I Decoding is essentially the same as the HMM: Viterbi
algorithm.

I Learning is now complicated and depends on the form of each
“s,” though I promise each iteration will be efficient. (Put
this on my tab, along with Viterbi.)

I No part of the the scoring function looks at neighboring words.

48 / 109

Notes on V. 3

I Decoding is essentially the same as the HMM: Viterbi
algorithm.

I Learning is now complicated and depends on the form of each
“s,” though I promise each iteration will be efficient. (Put
this on my tab, along with Viterbi.)

I No part of the the scoring function looks at neighboring words.

49 / 109

Notes on V. 3

I Decoding is essentially the same as the HMM: Viterbi
algorithm.

I Learning is now complicated and depends on the form of each
“s,” though I promise each iteration will be efficient. (Put
this on my tab, along with Viterbi.)

I No part of the the scoring function looks at neighboring words.

50 / 109

V. 3

Brings features to HMMs, but learning is going to require more
than just counting and normalizing.

51 / 109

Sequence Labeling v. 4

Let each scoring component (“s”) “see” the whole input. By
convention, y0 =© is always the “start label.”

ŷ = argmax
y∈Ln

Score(x,y)︷ ︸︸ ︷
n∑

i=0

s(x, i, yi, yi+1)

Note that x can have arbitrary length, so we need “s” functions
that are capable of adapting to variable-length input.

52 / 109

Notes on V. 4

I Decoding is essentially the same as the HMM and v. 3:
Viterbi algorithm.

I As with v. 3, learning is complicated and depends on the form
of each “s.”

I This model strictly generalizes local classifiers (v. 0), the
HMM (v. 2), and v. 3.

53 / 109

Notes on V. 4

I Decoding is essentially the same as the HMM and v. 3:
Viterbi algorithm.

I As with v. 3, learning is complicated and depends on the form
of each “s.”

I This model strictly generalizes local classifiers (v. 0), the
HMM (v. 2), and v. 3.

54 / 109

Notes on V. 4

I Decoding is essentially the same as the HMM and v. 3:
Viterbi algorithm.

I As with v. 3, learning is complicated and depends on the form
of each “s.”

I This model strictly generalizes local classifiers (v. 0), the
HMM (v. 2), and v. 3.

55 / 109

V. 4

Even better features for HMMs, with the promise of efficient
decoding and learning.

56 / 109

Reflection

Claim: As we move from v. 1 (sequential classifiers) to v. 4 to v. 0
(local classifiers), the scoring functions available become strictly
less expressive.

v. 1 v. 4 v. 0

57 / 109

Reflection

Claim: As we move from v. 1 (sequential classifiers) to v. 4 to v. 0
(local classifiers), the scoring functions available become strictly
less expressive.

v. 1 v. 4 v. 0

Compare v. 1 and v. 4. What kinds of features can you use in v. 1
that you can’t use in v. 4?

58 / 109

Reflection

Claim: As we move from v. 1 (sequential classifiers) to v. 4 to v. 0
(local classifiers), the scoring functions available become strictly
less expressive.

v. 1 v. 4 v. 0

Compare v. 1 and v. 4. What kinds of features can you use in v. 1
that you can’t use in v. 4?

Now consider v. 4 and v. 0. What kinds of features can you use in
v. 4 that you can’t use in v. 0?

59 / 109

Where We Are

0 1 2 3 4

Score
s(x, i, yi) s(x, i,y1:i)

emission/ s(xi, yi)+ s(x, i, yi, yi+1)decomp. transition s(yi, yi+1)

learn
SGD ? count & ? ?

normalize

decode local
beam

Viterbi Viterbi Viterbi
search

60 / 109

The Main Dish

61 / 109

Two Problems to Solve

1. Decoding: the Viterbi algorithm for choosing ŷ.
I Usually taught for classical HMMs (v. 2); I will teach it for

v. 4, abstracting away “s.”

2. Learning: estimating the parameters of each s function.
I Depending on your choices here, you arrive at the structured

perceptron, the classical conditional random field (CRF),
neural CRFs, and more.

62 / 109

A Data Structure

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

The cell at row j, column i will hold information pertaining to
choosing ŷi = `j .

63 / 109

The End of the Sequence

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

ŷn = argmax
yn∈L

n∑
i=0

s(x, i, yi, yi+1)

= argmax
yn∈L

s(x, i, yn−1, yn) + s(x, i, yn,8)

The decision about ŷn is a function of yn−1, x, and nothing else!

64 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

65 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

66 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

67 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

68 / 109

Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

69 / 109

Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

70 / 109

Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

♥n−1(y) = max
yn−2∈L

s(x, n− 2, yn−2, y) + ♥n−2(yn−2)

71 / 109

Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

♥n−1(y) = max
yn−2∈L

s(x, n− 2, yn−2, y) + ♥n−2(yn−2)

...

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

72 / 109

Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

♥n−1(y) = max
yn−2∈L

s(x, n− 2, yn−2, y) + ♥n−2(yn−2)

...

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

...

♥1(y) = s(x, 0,©, y)

73 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1
`2
...
`L
8

74 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1)
`2 ♥1(`2)
...
`L ♥1(`L)
8

♥1(y) = s(x, 0,©, y)

75 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1) ♥2(`1)
`2 ♥1(`2) ♥2(`2)
...
`L ♥1(`L) ♥2(`L)
8

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

76 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1) ♥2(`1) ♥n(`1)
`2 ♥1(`2) ♥2(`2) ♥n(`2)
...
`L ♥1(`L) ♥2(`L) ♥n(`L)
8

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

77 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1) ♥2(`1) ♥n(`1)
`2 ♥1(`2) ♥2(`2) ♥n(`2)
...
`L ♥1(`L) ♥2(`L) ♥n(`L)
8 ♥n+1(8)

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

78 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

79 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1

`2

...

`L

8

80 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1)
bp1(`1)

`2
♥1(`2)
bp1(`2)

...

`L
♥1(`L)
bp1(`L)

8

♥1(y) = s(x, 0,©, y)
bp1(y) =©

81 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1) ♥2(`1)
bp1(`1) bp2(`1)

`2
♥1(`2) ♥2(`2)
bp1(`2) bp2(`2)

...

`L
♥1(`L) ♥2(`L)
bp1(`L) bp2(`L)

8

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

bpi(y) = argmax
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

82 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1) ♥2(`1) ♥n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
♥1(`2) ♥2(`2) ♥n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
♥1(`L) ♥2(`L) ♥n(`L)
bp1(`L) bp2(`L) bpn(`L)

8

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

bpn(y) = argmax
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

83 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1) ♥2(`1) ♥n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
♥1(`2) ♥2(`2) ♥n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
♥1(`L) ♥2(`L) ♥n(`L)
bp1(`L) bp2(`L) bpn(`L)

8
♥n+1(8)
bpn+1(8)

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

bpn+1(8) = argmax
yn∈L

s(x, n, yn,8) + ♥n(yn)

84 / 109

Full Viterbi Procedure

Input: scores s(x, i, y, y′), for all i ∈ {0, . . . , n}, y, y′ ∈ L

Output: ŷ

1. Base case: ♥1(y) = s(x, 0,©, y)
2. For i ∈ {2, . . . , n+ 1}:

I Solve for ♥i(∗) and bpi(∗).

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) +♥i−1(yi−1),

bpi(y) = argmax
yi−1∈L

s(x, i− 1, yi−1, y) +♥i−1(yi−1)

(At n+ 1 we’re only interested in y = 8.)

3. ŷi+1 ←8
4. For i ∈ {n, . . . , 1}:

I ŷi ← bpi+1(ŷi+1)

85 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

86 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above.

87 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

88 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.”

89 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.” O(nL2)

90 / 109

Why it Works

Viterbi exploits the distributivity property:

max
y1:n

n∑
i=0

s(x, i, yi, yi+1) = max
yn

s(x, i, yn,8) + max
y1:n−1

n−1∑
i=0

s(x, i, yi, yi+1)

= max
yn

s(x, i, yn,8) + max
yn−1

s(x, i, yn − 1, yn)

+ max
y1:n−2

n−2∑
i=0

s(x, i, yi, yi+1)

Max plus max plus max plus max plus . . .

91 / 109

Back to “s”

We haven’t said much about the function that scores candidate
label pairs at different positions, s(x, i, y, y′).

This function is very important; two common choices are:

I Expert-designed, task-specific features f(x, i, y, y′) and
weights θ

I A neural network that encodes xi in context, yi, and yi+1 and
gives back a goodness score

Either way, let θ denote the parameters of s. From now on, we’ll
use s(x, i, y, y′;θ) and Score(x,y;θ) to emphasize that “s” is a
function of parameters θ we need to estimate.

92 / 109

Probabilistic View of Learning

As we’ve done before, we start with the principle of maximum
likelihood to estimate θ:

θ∗ = argmax
θ∈Rd

T∏
i=1

p(Y = yi |X = xi;θ)

= arg max
θ∈Rd

T∑
i=1

log p(Y = yi |X = xi;θ)

= arg min
θ∈Rd

T∑
i=1

− log p(Y = yi |X = xi;θ)︸ ︷︷ ︸
sometimes called “log loss” or “cross entropy”

Next, we’ll drill down into “p(Y = yi |X = xi;θ).”

93 / 109

Conditional Random Fields
Lafferty et al. (2001)

CRFs are a tremendously influential model that generalizes
multinomial logistic regression to structured outputs like sequences.

pCRF(y | x;θ) =
exp Score(x,y;θ)

Z(x;θ)

Z(x;θ) =
∑

y′∈Y(x)

exp Score(x,y′;θ)

− log pCRF(y | x;θ) = −Score(x,y;θ)︸ ︷︷ ︸
“hope”

+ logZ(x;θ)︸ ︷︷ ︸
“fear”

So, our“CRF”:

I Uses Viterbi for decoding (our v. 4 sequence labeler)

I Trains parameters to maximize likelihood (like MLR and NNs)

94 / 109

Conditional Random Field
Lafferty et al. (2001)

95 / 109

Sequence-Level Log Loss

Here’s the maximum likelihood learning problem (equivalently,
sequence-level log loss):

θ∗ = argmin
θ∈Rd

T∑
i=1

−Score(xi,yi;θ) + logZ(xi;θ)

If we can calculate and differentiate (w.r.t. θ) the Score and Z
functions, we can use SGD to learn.

96 / 109

Reflection

Given a training instance 〈xi,yi〉, what do you need to do to
calculate Score(xi,yi;θ)?

97 / 109

Calculating Z(x;θ)

Good news! The algorithm that gives us Z is almost exactly like
the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label
sequences, given x, in the same asymptotic time and space as
Viterbi.

Let αi(y) be the sum of all (exponentiated) scores of label prefixes
of length i, ending in y.

98 / 109

Some Algebra

Given the decomposition

Score(x,y;θ) =

n∑
i=0

s(x, i, yi, yi+1;θ),

it holds that

exp Score(x,y;θ) =

n∏
i=0

es(x,i,yi,yi+1;θ),

and therefore

Z(x;θ) =
∑

y′∈Y(x)

n∏
i=0

es(x,i,y
′
i,y
′
i+1;θ)

99 / 109

Forward Algorithm

Input: scores s(x, i, y, y′;θ), for all i ∈ {0, . . . , n}, y, y′ ∈ L

Output: Z(x;θ)

1. Base case: α1(y) = es(x,0,©,y;θ)

2. For i ∈ {2, . . . , n+ 1}:
I Solve for αi(∗).

αi(y) =
∑

yi−1∈L
es(x,i−1,yi−1,y;θ) × αi−1(yi−1)

(At n+ 1 we’re only interested in y = 8.)

3. Return αn+1(8), which is equal to Z(x;θ).

100 / 109

Intuitions about the Forward Algorithm

Just as Viterbi changes “scary max over big sum” to “max plus
max plus max plus . . . ,”
the Forward algorithm changes “scary sum over big product” to
“plus times plus times plus times”

If you organize the operations in the other direction, you get the
Backward algorithm.

You can differentiate Z with respect to s, because it’s all just exp,
addition, and multiplication. If you mechanically derive the partial
derivatives, you will rediscover the Backward algorithm.

101 / 109

Computation Graph View of CRF

ϑ

x

Fo
rw

ar
d

−log pCRF(y | x; ϑ)

−
Vi

te
rb

i

ŷ

loss(ϑ)

y

…

+

log

Sc
or

e

Z(x; ϑ)

s

102 / 109

Reflection

Earlier in the lecture, I promised that learning would have some
guarantees. Consider:

I The runtime and space requirements for calculating the loss
and gradient, as a function of the data.

I The conditions under which we can confidently expect
convergence to a global optimum of the likelihood if we use
SGD.

103 / 109

An Alternative: Structured Perceptron

Recall that CRF = v. 4 + sequence-level log loss.

Perceptron loss (Collins, 2002):

θ∗ = argmin
θ∈Rd

T∑
i=1

−Score(xi,yi;θ) + max
y

Score(xi,y;θ)

The structured perceptron = v. 4 + perceptron loss.

104 / 109

Regularization

Just as in classification with linear and non-linear models, you’ll
want to take steps to avoid overfitting.

The same tools (e.g., `2 and `1 penalties for linear model weights,
and dropout for neural networks) can be used here.

105 / 109

Digestif: Connections and Generalizations

V. 2–4 are weighted finite-state machines (think of labels as
states).

The models we saw today are all “first order” sequence models in
the sense that each yi only interacts with one immediate neighbor
through s.

I Second-order: Score(x,y) =
∑n

i=0 s(x, i, yi, yi+1, yi+2)

I mth-order: Score(x,y) =
∑n

i=0 s(x, i,yi:i+m)

Viterbi for mth order has O(nLm+1) runtime.

106 / 109

References I

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein.
Painless unsupervised learning with features. In Proc. of NAACL, 2010.

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that
learns what’s in a name. Machine learning, 34(1–3):211–231, 1999.

Kenneth W. Church. A stochastic parts program and noun phrase parser for
unrestricted text. In Proc. of ANLP, 1988.

Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and
information extraction with a supersense sequence tagger. In Proc. of EMNLP,
2006.

Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns in
WordNet. In Proc. of EMNLP, 2003.

Michael Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proc. of EMNLP, 2002.

John M. Conroy and Dianne P. O’Leary. Text summarization via hidden Markov
models. In Proc. of SIGIR, 2001.

Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
1998.

Nizar Habash and Owen Rambow. Arabic tokenization, part-of-speech tagging and
morphological disambiguation in one fell swoop. In Proc. of ACL, 2005.

107 / 109

References II
Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction

program based on a noisy channel model. In Proc. of COLING, 1990.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of
ICML, 2001.

G. A. Miller, C. Leacock, T. Randee, and R. Bunker. A semantic concordance. In
Proc. of HLT, 1993.

Lance A Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based
learning, 1995. URL http://arxiv.org/pdf/cmp-lg/9505040.pdf.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily Danchik, Michael T.
Mordowanec, Henrietta Conrad, and Noah A. Smith. Comprehensive annotation of
multiword expressions in a social web corpus. In Proc. of LREC, 2014.

Thamar Solorio and Yang Liu. Learning to predict code-switching points. In Proc. of
EMNLP, 2008.

Richard W. Sproat, Chilin Shih, William Gale, and Nancy Chang. A stochastic
finite-state word-segmentation algorithm for Chinese. Computational Linguistics,
22(3):377–404, 1996. URL https://www.aclweb.org/anthology/J96-3004.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates,
Daniel Jurafsky, Paul Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie
Meteer. Dialogue act modeling for automatic tagging and recognition of
conversational speech. Computational Linguistics, 26(3):339–374, 2000. URL
https://www.aclweb.org/anthology/J00-3003.

108 / 109

http://arxiv.org/pdf/cmp-lg/9505040.pdf
https://www.aclweb.org/anthology/J96-3004
https://www.aclweb.org/anthology/J00-3003

References III

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment
in statistical translation. In Proc. of COLING, 1996.

109 / 109

	References

