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Motivation

I Dominant perspective in NLP in the 1990s–today: supervised
machine learning
I This lecture’s model is a direct ancestor of today’s popular

methods.

I Engineering approach: feature design

I Relevance today: interpretable and efficient classification
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Classification in NLP

We approach many problems in NLP by treating them as problems
of classification.

I Input might be a document, a paragraph, a sentence, a word

I Output is a label from a finite set of classes or labels, denoted
L, defined by your application or theory

Notation: classify : V∗ → L is a classifier, e.g., the one you build.
It is deterministic and typically constructed from data and machine
learning.
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Text (Document) Classification Examples

I Library-like subjects (e.g., the Dewey decimal system)

I News stories: politics vs. sports vs. business vs. technology ...

I Reviews of films, restaurants, products: postive vs. negative

I Author attributes: identity, political stance, gender, age, ...

I Email, arXiv submissions, etc.: spam vs. not

I What is the reading level of a piece of text?

I How influential will a scientific paper be?

I Will a piece of proposed legislation pass?

I What dialect is a text written in?

I Does the text contain content that will likely offend people?
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Notation

V is the set of words in the language we’re working with.

X is a random variable for texts (inputs); in a given instance it
takes a value from V∗ (sequences of words).

Y is a random variable for labels (outputs); in a given instance it
takes a value from L.

p(X, Y ) is the “true” distribution of labeled texts; p(Y ) is the
distribution of labels. Normally, we do not know these
distributions except by looking at data.
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Evaluating a Classifier

Accuracy:

A(classify) = p(classify(X) = Y )

=
∑

x∈V∗,`∈L
p(X = x, Y = `) ·

{
1 if classify(x) = `
0 otherwise

=
∑

x∈V∗,`∈L
p(X = x, Y = `) · 1 {classify(x) = `}

where p is the true distribution over data. Error is 1−A.
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0 otherwise
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x∈V∗,`∈L
p(X = x, Y = `) · 1 {classify(x) = `}

where p is the true distribution over data. Error is 1−A.

This is estimated using a test dataset 〈x̄1, ȳ1〉, . . . 〈x̄m, ȳm〉:

Â(classify) =
1

m

m∑
i=1

1 {classify(x̄i) = ȳi}
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Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can
get Â ≈ 0.99 by always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.
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get Â ≈ 0.99 by always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

9 / 99



Evaluation in the “Needle in a Haystack” Case

Suppose one label `target ∈ L is a “target.”
Precision and recall encode the goals of returning a “pure” set of
targeted instances and capturing all of them.

actually in 
the target 

class;
Y = !target

believed to be 
in the target 

class;
classify(x) = 

!target

correctly 
labeled 
as !target

A BC
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Suppose one label `target ∈ L is a “target.”
Precision and recall encode the goals of returning a “pure” set of
targeted instances and capturing all of them.

actually in 
the target 

class;
Y = !target

believed to be 
in the target 

class;
classify(x) = 

!target

correctly 
labeled 
as !target

A BC

P̂(classify) =
|C|
|B|

=
|A ∩B|
|B|

R̂(classify) =
|C|
|A|

=
|A ∩B|
|A|

F̂1(classify) = 2 · P̂ · R̂
P̂ + R̂
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Another View: Contingency Table

actually in 
the target 

class;
Y = !target

believed to be 
in the target 

class;
classify(x) = 

!target

correctly 
labeled 
as !target

A BC

Y = `target Y 6= `target

classify(X) = `target |C| (true positives) |B \ C| (false positives) |B|
classify(X) 6= `target |A \ C| (false negatives) (true negatives)

|A|
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Generalization of Precision and Recall

Macroaveraged precision and recall: let each class be the “target”
and report the average P̂ and R̂ across all classes.

Microaveraged precision and recall: pool all one-vs.-rest decisions
into a single contingency table, calculate P̂ and R̂ from that.
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Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.

I Variance due to the test data.
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(Some additional topics in the “extras” section at the end of this
file: cross-validation and statistical significance.)
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Building a Text Classifier: Standard Line of Attack

1. Human experts label some data, or nature provides labeled
data.

2. Feed the data to a supervised machine learning algorithm that
constructs an automatic classifier classify : V∗ → L

3. Apply classify to as much data as you want!

Note: we assume the texts are segmented into symbols from V,
even the new ones.
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Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

22 / 99



Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

23 / 99



Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
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n

|i : countxi(v) > 0|
φtfidf
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v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

“Bag of words” model: one based on word frequency features
alone.
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Reflection

Given what you already know about words, can you think of
features that might generalize better than the ones just discussed?
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Features are Extremely Important!

The features fully determine what a learned model “sees” about an
example.

We often stack the features into a feature vector: φ(x) ∈ Rd,
which “embeds” the input x in d-dimensional space
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Aperitif: (Binary) Logistic Regression

A logistic regression model is defined by:
I A collection of feature functions, denoted φ1, . . . φd, each

mapping V∗ → R.
I The designer of the system chooses the features.

I A coefficient or “weight” for every feature, denoted θ1, . . . , θd,
each ∈ R.
I The weights are “parameters” that are chosen

automatically by applying a learning algorithm.

The label set is L = {+1,−1}.

scoreLR(x;θ) =

d∑
j=1

θjφj(x) = θ>φ(x)

classifyLR(x) = sign(scoreLR(x;θ))
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Computation Graph View of LR Classifier

ϑ

ϕ

x

×
scoreLR

sign

classify(x)
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Geometric View of LR

x3

x1

x4

x2
φ1

φ2
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Learning a Logistic Regression Classifier

Learning requires us to choose the weight vector, θ.

There are many ways you could do this; logistic regression tells you
what vector you should choose based on a probabilistic view of the
classifier (but not exactly how to find it).
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Reflection

Recall the bias feature, φbias(x) = 1. What role does it play in the
geometric interpretation of the model?
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Standard Logistic Function

σ(t) =
1

1 + e−t
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Probabilistic View of LR

Our model actually defines a probability distribution over the labels
L = {+1,−1}:

pLR(Y = +1 |X = x;θ) = σ(scoreLR(x;θ))
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Probabilistic View of LR

Our model actually defines a probability distribution over the labels
L = {+1,−1}:

pLR(Y = +1 |X = x;θ) = σ(scoreLR(x;θ))

pLR(Y = −1 |X = x;θ) = 1− σ(scoreLR(x;θ) = σ(−scoreLR(x;θ))

pLR(Y = y |X = x;θ) = σ(y · scoreLR(x;θ))

Note: recorded lecture has a mistake on the line above (at 47:35);
there should not be a minus sign in front of y.
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Computation Graph View of LR Probability

ϑ

ϕ

x

×
scoreLR σ

pLR(Y = +1 | x; ϑ)sign

classify(x)
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Probabilistic View of LR

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pLR(Y = yi |X = xi;θ)
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Probabilistic View of LR

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pLR(Y = yi |X = xi;θ)

= arg max
θ∈Rd

n∑
i=1

log pLR(Y = yi |X = xi;θ)

= arg min
θ∈Rd

n∑
i=1

− log pLR(Y = yi |X = xi;θ)︸ ︷︷ ︸
sometimes called “log loss” or “cross entropy”
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Computation Graph View of LR Probability of Correct
Label y

ϑ

ϕ

x

×
scoreLR σ

pLR(Y = y | x; ϑ)sign

classify(x)

y
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Computation Graph View of Log Loss (One Instance)

ϑ

ϕ

x

×
scoreLR σ

p LR
(Y

 =
 y 

| x
; ϑ

)log

−

sign

classify(x)

loss(ϑ)

y
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Computation Graph View of Log Loss (Many Instances)

ϑ

ϕ

x

×
scoreLR σ

p LR
(Y

 =
 y 

| x
; ϑ

)log

−

sign

classify(x)

loss(ϑ)

y

…

+
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Learning for Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

log
(

1 + exp
(
−yi · θ>φ(xi)

))
︸ ︷︷ ︸

loss(θ)

I You can efficiently implement the objective function “loss”
given your data and your features φ.

I Because it is continuous and differentiable, and the
optimization problem is unconstrained, you can use the
gradient of loss to iteratively move closer to a minimum.

I Provable: the function is convex, so these methods will
converge to a global minimum. More about this in Eisenstein
(2019) Appendix B.
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Practical Point: Computing the Gradient

Deriving the gradient of loss with respect to θ, denoted ∇θloss, is
left as an exercise.
Hint: use the chain rule from calculus and work backward through
the computation graph on slide 47.
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Stochastic Gradient Descent

Goal: minimize
∑N

i=1 gi(θ) with respect to θ.

Input: initial value θ, number of epochs T , learning rate α

For t ∈ {1, . . . , T}:
I Choose a random permutation π of {1, . . . , N}.
I For i ∈ {1, . . . , N}:

θ ← θ − α · ∇θgπ(i)

Output: θ
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Reflection

We can prove that SGD will eventually get very close to a global
minimum of a convex objective function. What do you think will
happen if we apply SGD to a function that is not convex?
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The Main Dish
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Multinomial Logistic Regression

We can generalize LR to an arbitrary label set L.
We need:

1. A more powerful definition of feature functions.

2. An update to the probability distribution.
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Input/Output Features

In LR, φj : V∗ → R (features only see inputs).

In MLR, fj : V∗ × L → R (features consider potential output
value, too).

I (We deliberately use “f” instead of “φ” here.)

General template:

f`,φ(x, y) = φ(x) · 1 {y = `}

E.g., if L = {sports, politics, health}, then we have separate

features f freq.
sports,vodka(x, y), f freq.

politics,vodka(x, y), and

f freq.
health,vodka(x, y).
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Multinomial Logistic Regression

A multinomial logistic regression model is defined by:
I A collection of feature functions, denoted f1, . . . fd, each

mapping V∗ × L → R.
I The designer of the system chooses the features.

I A coefficient or “weight” for every feature, denoted θ1, . . . , θd,
each ∈ R.
I The weights are “parameters” that are chosen

automatically by applying a learning algorithm.

scoreMLR(x, y;θ) =

d∑
j=1

θjfj(x, y) = θ>f(x, y)

classifyMLR(x) = arg max
y∈L

scoreMLR(x, y;θ)
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Geometric View of MLR

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3)

(x, y1)

(x, y4)
(x, y2)

f1

f2
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only two features, f1 and f2.

(x, y3)

f1

f2

(x, y1)

(x, y4)
(x, y2)

θ · f = θ1f1 + θ2f2 = 0
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Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3) (x, y1)

(x, y4)(x, y2) f1

f2

distance(θ · f = 0, f0) =
|θ · f0|
‖θ‖2

∝ |θ · f0|
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Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3) (x, y1)

(x, y4)(x, y2) f1

f2

θ · f(x, y1) > θ · f(x, y3) > θ · f(x, y4) > 0 ≥ θ · f(x, y2)
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Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3) (x, y1)

(x, y4)(x, y2) f1

f2

score(x, y1) > score(x, y3) > score(x, y4) > score(x, y2)
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Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3)

(x, y1)

(x, y4)
(x, y2)

f1

f2

score(x, y3) > score(x, y1) > score(x, y2) > score(x, y4)
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Probabilistic View of MLR

Our model defines a probability distribution over the labels L.
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Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

First, we need to introduce a new function from vectors to vectors.

softmax (〈t1, t2, . . . , tk〉) =

〈
et1∑k
j=1 e

tj
,

et2∑k
j=1 e

tj
, . . . ,

etk∑k
j=1 e

tj

〉

=
exp t

‖ exp t‖1

Note the use of element-wise exponential:
exp(t) = 〈exp t1, exp t2, . . . , exp tk〉.
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Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

pMLR(Y |X = x;θ) = softmax
(
〈scoreMLR(x, `;θ)〉`∈L

)
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Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

pMLR(Y |X = x;θ) = softmax
(
〈scoreMLR(x, `;θ)〉`∈L

)
Z(x;θ) =

∑
`′∈L

exp scoreMLR(x, `′;θ)
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Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

pMLR(Y |X = x;θ) = softmax
(
〈scoreMLR(x, `;θ)〉`∈L

)
Z(x;θ) =

∑
`′∈L

exp scoreMLR(x, `′;θ)

pMLR(Y = ` |X = x;θ) =
exp scoreMLR(x, `;θ)

Z(x;θ)
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Probabilistic View of MLR
This slide is almost identical to slide 42!

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pMLR(Y = yi |X = xi;θ)

= arg max
θ∈Rd

n∑
i=1

log pMLR(Y = yi |X = xi;θ)

= arg min
θ∈Rd

n∑
i=1

− log pMLR(Y = yi |X = xi;θ)︸ ︷︷ ︸
sometimes called “log loss” or “cross entropy”
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Reflection: Computation Graph View of MLR
What do you need to change from the LR case?

ϑ

x

×
scoreLR

p M
LR

(Y
 =

 y 
| x

; ϑ
)log

−classify(x)

loss(ϑ)

y

…

+
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Learning for Multinomial Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

−θ>f(xi, yi)︸ ︷︷ ︸
“hope”

+ log
∑
`∈L

exp(θ>f(xi, `))︸ ︷︷ ︸
“fear”

See slide 31; all points are the same!
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(M)LR Tends to Overfit

If a particular feature fj is usually positive, then it always improves
the loss to increase θj .

Regularization: discourage every θj from getting too large in
magnitude.
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Regularization

arg min
θ

loss(θ) + λ‖θ‖pp

where λ > 0 is a “hyperparameter” and p = 2 or 1.

75 / 99



`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).

I Many have argued that this is a good thing (Tibshirani, 1996);
it’s a kind of feature selection.

I Do not confuse it with data sparseness (a problem to be
overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.
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`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.
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Reflection: Computation Graph View of MLR
What do you need to change for regularization?

ϑ

loss(ϑ)

…

+

81 / 99



MLR Learning

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form for the objective function; you must
use a numerical optimization algorithm like stochastic
gradient descent.

I MLR is powerful but expensive (Z(xi;θ)).

I Regularization is very important; we don’t actually do MLE. If
you want to be absolutely precise, you’re minimizing the
regularized log loss.
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Digestif: Connections

Slight changes to the loss function lead to other well-known
learning methods.

I Perceptron: change “fear” to max`∈L score(x, `;θ)

I Linear support vector machine: change “fear” to
max`∈L score(x, `;θ) + (cost of substituting ` for y)
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Digestif: Connections

Slight changes to the loss function lead to other well-known
learning methods.

I Perceptron: change “fear” to max`∈L score(x, `;θ)

I Linear support vector machine: change “fear” to
max`∈L score(x, `;θ) + (cost of substituting ` for y)

The model I presented as “MLR” has gone by other names:

I Maximum entropy model, because it is provable that
pMLR(Y |X;θ∗) is the distribution with the greatest entropy
(uncertainty about Y ) under the constraint that Epf = Ẽf .
See Berger et al. (1996).

I Exponential model, because it is a member of the generalized
exponential family.
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On Data

For machine learning methods, the math can be demanding!

This makes it easy to forget the importance of the data and how
we represent it (features).
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On Features

Feature engineering is something some people love and others hate.
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On Features

Feature engineering is something some people love and others hate.

There have been many attempts to automate it, either by throwing
in a huge number and letting the learner decide (e.g., via sparse
regularization), or searching for new, complex features by
combining simpler ones, or learning them “from scratch.”

87 / 99



On Features

Feature engineering is something some people love and others hate.

There have been many attempts to automate it, either by throwing
in a huge number and letting the learner decide (e.g., via sparse
regularization), or searching for new, complex features by
combining simpler ones, or learning them “from scratch.”

Responsible impact: just because you have excluded features that
you don’t want your model to know about doesn’t mean you’ve
excluded all the correlates of those features!
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Extras
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Cross-Validation

Remember that Â, P̂, R̂, and F̂1 are all estimates of the classifier’s
quality under the true data distribution.

I Estimates are noisy!

K-fold cross-validation:

I Partition the training set into K non-overlapping “folds”
x1, . . . ,xK .

I For i ∈ {1, . . . ,K}:
I Train on x1:n \ xi, using xi as development data.
I Estimate quality on the ith development set: Âi

I Report the average:

Â =
1

K

K∑
i=1

Âi

and perhaps also the standard error.
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Statistical Significance

Suppose we have two classifiers, classify1 and classify2.
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Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it
isn’t. But if Â1 � Â2, we are tempted to believe otherwise.
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Is classify1 better? The “null hypothesis,” denoted H0, is that it
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Frequentist view: how (im)probable is the observed difference,
given H0 = true?
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Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it
isn’t. But if Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

Frequentist view: how (im)probable is the observed difference,
given H0 = true?

Caution: statistical significance is neither necessary nor sufficient
for research significance or practical usefulness!
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A Hypothesis Test for Text Classifiers
McNemar (1947)

1. The null hypothesis: A1 = A2

2. Pick significance level α, an “acceptably” high probability of
incorrectly rejecting H0.

3. Calculate the test statistic, k (explained in the next slide).

4. Calculate the probability of a more extreme value of k,
assuming H0 is true; this is the p-value.

5. Reject the null hypothesis if the p-value is less than α.

The p-value is p(this observation | H0 is true), not the other way
around!
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McNemar’s Test: Details
Assumptions: independent (test) samples and binary
measurements. Count test set error patterns:

classify1 classify1

is incorrect is correct

classify2 is incorrect c00 c10

classify2 is correct c01 c11 m · Â2

m · Â1

If A1 = A2, then c01 and c10 are each distributed according to
Binomial(c01 + c10,

1
2).

test statistic k = min{c01, c10}

p-value =
1

2c01+c10−1

k∑
j=0

(
c01 + c10

j

)
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Other Tests

Different tests make different assumptions.

Sometimes we calculate an interval that would be “unsurprising”
under H0 and test whether a test statistic falls in that interval
(e.g., t-test and Wald test).

In many cases, there is no closed form for estimating p-values, so
we use random approximations (e.g., permutation test and paired
bootstrap test).

If you do lots of tests, you need to correct for that!

Read lots more in Smith (2011), appendix B.
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