
Natural Language Processing (CSE 517 & 447):
Multinomial Logistic Regression

Noah Smith
c© 2022

University of Washington
nasmith@cs.washington.edu

Winter 2022

Readings: Eisenstein (2019) 2 and Appendix B

1 / 99

Motivation

I Dominant perspective in NLP in the 1990s–today: supervised
machine learning
I This lecture’s model is a direct ancestor of today’s popular

methods.

I Engineering approach: feature design

I Relevance today: interpretable and efficient classification

2 / 99

Classification in NLP

We approach many problems in NLP by treating them as problems
of classification.

I Input might be a document, a paragraph, a sentence, a word

I Output is a label from a finite set of classes or labels, denoted
L, defined by your application or theory

Notation: classify : V∗ → L is a classifier, e.g., the one you build.
It is deterministic and typically constructed from data and machine
learning.

3 / 99

Text (Document) Classification Examples

I Library-like subjects (e.g., the Dewey decimal system)

I News stories: politics vs. sports vs. business vs. technology ...

I Reviews of films, restaurants, products: postive vs. negative

I Author attributes: identity, political stance, gender, age, ...

I Email, arXiv submissions, etc.: spam vs. not

I What is the reading level of a piece of text?

I How influential will a scientific paper be?

I Will a piece of proposed legislation pass?

I What dialect is a text written in?

I Does the text contain content that will likely offend people?

4 / 99

Notation

V is the set of words in the language we’re working with.

X is a random variable for texts (inputs); in a given instance it
takes a value from V∗ (sequences of words).

Y is a random variable for labels (outputs); in a given instance it
takes a value from L.

p(X, Y) is the “true” distribution of labeled texts; p(Y) is the
distribution of labels. Normally, we do not know these
distributions except by looking at data.

5 / 99

Evaluating a Classifier

Accuracy:

A(classify) = p(classify(X) = Y)

=
∑

x∈V∗,`∈L
p(X = x, Y = `) ·

{
1 if classify(x) = `
0 otherwise

=
∑

x∈V∗,`∈L
p(X = x, Y = `) · 1 {classify(x) = `}

where p is the true distribution over data. Error is 1−A.

6 / 99

Evaluating a Classifier

Accuracy:

A(classify) = p(classify(X) = Y)

=
∑

x∈V∗,`∈L
p(X = x, Y = `) ·

{
1 if classify(x) = `
0 otherwise

=
∑

x∈V∗,`∈L
p(X = x, Y = `) · 1 {classify(x) = `}

where p is the true distribution over data. Error is 1−A.

This is estimated using a test dataset 〈x̄1, ȳ1〉, . . . 〈x̄m, ȳm〉:

Â(classify) =
1

m

m∑
i=1

1 {classify(x̄i) = ȳi}

7 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can
get Â ≈ 0.99 by always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

8 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can
get Â ≈ 0.99 by always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

9 / 99

Evaluation in the “Needle in a Haystack” Case

Suppose one label `target ∈ L is a “target.”
Precision and recall encode the goals of returning a “pure” set of
targeted instances and capturing all of them.

actually in
the target

class;
Y = !target

believed to be
in the target

class;
classify(x) =

!target

correctly
labeled
as !target

A BC

10 / 99

Evaluation in the “Needle in a Haystack” Case

Suppose one label `target ∈ L is a “target.”
Precision and recall encode the goals of returning a “pure” set of
targeted instances and capturing all of them.

actually in
the target

class;
Y = !target

believed to be
in the target

class;
classify(x) =

!target

correctly
labeled
as !target

A BC

P̂(classify) =
|C|
|B|

=
|A ∩B|
|B|

R̂(classify) =
|C|
|A|

=
|A ∩B|
|A|

F̂1(classify) = 2 · P̂ · R̂
P̂ + R̂

11 / 99

Another View: Contingency Table

actually in
the target

class;
Y = !target

believed to be
in the target

class;
classify(x) =

!target

correctly
labeled
as !target

A BC

Y = `target Y 6= `target

classify(X) = `target |C| (true positives) |B \ C| (false positives) |B|
classify(X) 6= `target |A \ C| (false negatives) (true negatives)

|A|

12 / 99

Generalization of Precision and Recall

Macroaveraged precision and recall: let each class be the “target”
and report the average P̂ and R̂ across all classes.

Microaveraged precision and recall: pool all one-vs.-rest decisions
into a single contingency table, calculate P̂ and R̂ from that.

13 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.

I Variance due to the test data.

14 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.

I Variance due to the test data.

15 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.
I Solution: report precision and recall for each class, or

categorize different error types.

I Variance due to the test data.

16 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.
I Solution: report precision and recall for each class, or

categorize different error types.

I Variance due to the test data.

17 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.
I Solution: report precision and recall for each class, or

categorize different error types.

I Variance due to the test data.
I Solution: repeat entire experiment with shuffled data, multiple

times, and report mean and standard deviation.

I Test data is not representative of real data.

18 / 99

Some Issues with Test-Set Accuracy

I Class imbalance: if p(Y = not spam) = 0.99, then you can

get Â ≈ 0.99 by always guessing “not spam.”
I Solution: report precision and recall

I Relative importance of classes or cost of error types.
I Solution: report precision and recall for each class, or

categorize different error types.

I Variance due to the test data.
I Solution: repeat entire experiment with shuffled data, multiple

times, and report mean and standard deviation.
I Test data is not representative of real data.

19 / 99

(Some additional topics in the “extras” section at the end of this
file: cross-validation and statistical significance.)

20 / 99

Building a Text Classifier: Standard Line of Attack

1. Human experts label some data, or nature provides labeled
data.

2. Feed the data to a supervised machine learning algorithm that
constructs an automatic classifier classify : V∗ → L

3. Apply classify to as much data as you want!

Note: we assume the texts are segmented into symbols from V,
even the new ones.

21 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

22 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

23 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

“Bag of words” model: one based on word frequency features
alone.

24 / 99

25 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

26 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

27 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

28 / 99

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.

E.g., φfreq.
hamburgers(x) = 1, φfreq.

the (x) = 2, φfreq.
delicious(x) = 0,

φfreq.
don’t touch(x) = 1.

I Can also be binary word “presence” features.
E.g., φpresence

hamburgers(x) = 1, φpresence
the (x) = 1, φpresence

delicious (x) = 0,

φpresence
don’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : countxi(v) > 0|
φtfidf
v (x) = φfreq.

v (x) · idf(v)

I “Bias” feature, φbias which takes a constant value of 1.

29 / 99

Reflection

Given what you already know about words, can you think of
features that might generalize better than the ones just discussed?

30 / 99

Features are Extremely Important!

The features fully determine what a learned model “sees” about an
example.

We often stack the features into a feature vector: φ(x) ∈ Rd,
which “embeds” the input x in d-dimensional space

31 / 99

Aperitif: (Binary) Logistic Regression

A logistic regression model is defined by:
I A collection of feature functions, denoted φ1, . . . φd, each

mapping V∗ → R.
I The designer of the system chooses the features.

I A coefficient or “weight” for every feature, denoted θ1, . . . , θd,
each ∈ R.
I The weights are “parameters” that are chosen

automatically by applying a learning algorithm.

The label set is L = {+1,−1}.

scoreLR(x;θ) =

d∑
j=1

θjφj(x) = θ>φ(x)

classifyLR(x) = sign(scoreLR(x;θ))

32 / 99

Computation Graph View of LR Classifier

ϑ

ϕ

x

×
scoreLR

sign

classify(x)

33 / 99

Geometric View of LR

x3

x1

x4

x2
φ1

φ2

34 / 99

Learning a Logistic Regression Classifier

Learning requires us to choose the weight vector, θ.

There are many ways you could do this; logistic regression tells you
what vector you should choose based on a probabilistic view of the
classifier (but not exactly how to find it).

35 / 99

Reflection

Recall the bias feature, φbias(x) = 1. What role does it play in the
geometric interpretation of the model?

36 / 99

Standard Logistic Function

σ(t) =
1

1 + e−t

37 / 99

Probabilistic View of LR

Our model actually defines a probability distribution over the labels
L = {+1,−1}:

pLR(Y = +1 |X = x;θ) = σ(scoreLR(x;θ))

38 / 99

Probabilistic View of LR

Our model actually defines a probability distribution over the labels
L = {+1,−1}:

pLR(Y = +1 |X = x;θ) = σ(scoreLR(x;θ))

pLR(Y = −1 |X = x;θ) = 1− σ(scoreLR(x;θ) = σ(−scoreLR(x;θ))

39 / 99

Probabilistic View of LR

Our model actually defines a probability distribution over the labels
L = {+1,−1}:

pLR(Y = +1 |X = x;θ) = σ(scoreLR(x;θ))

pLR(Y = −1 |X = x;θ) = 1− σ(scoreLR(x;θ) = σ(−scoreLR(x;θ))

pLR(Y = y |X = x;θ) = σ(y · scoreLR(x;θ))

Note: recorded lecture has a mistake on the line above (at 47:35);
there should not be a minus sign in front of y.

40 / 99

Computation Graph View of LR Probability

ϑ

ϕ

x

×
scoreLR σ

pLR(Y = +1 | x; ϑ)sign

classify(x)

41 / 99

Probabilistic View of LR

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pLR(Y = yi |X = xi;θ)

42 / 99

Probabilistic View of LR

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pLR(Y = yi |X = xi;θ)

= arg max
θ∈Rd

n∑
i=1

log pLR(Y = yi |X = xi;θ)

43 / 99

Probabilistic View of LR

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pLR(Y = yi |X = xi;θ)

= arg max
θ∈Rd

n∑
i=1

log pLR(Y = yi |X = xi;θ)

= arg min
θ∈Rd

n∑
i=1

− log pLR(Y = yi |X = xi;θ)︸ ︷︷ ︸
sometimes called “log loss” or “cross entropy”

44 / 99

Computation Graph View of LR Probability of Correct
Label y

ϑ

ϕ

x

×
scoreLR σ

pLR(Y = y | x; ϑ)sign

classify(x)

y

45 / 99

Computation Graph View of Log Loss (One Instance)

ϑ

ϕ

x

×
scoreLR σ

p LR
(Y

 =
 y

| x
; ϑ

)log

−

sign

classify(x)

loss(ϑ)

y

46 / 99

Computation Graph View of Log Loss (Many Instances)

ϑ

ϕ

x

×
scoreLR σ

p LR
(Y

 =
 y

| x
; ϑ

)log

−

sign

classify(x)

loss(ϑ)

y

…

+

47 / 99

Learning for Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

log
(

1 + exp
(
−yi · θ>φ(xi)

))
︸ ︷︷ ︸

loss(θ)

I You can efficiently implement the objective function “loss”
given your data and your features φ.

I Because it is continuous and differentiable, and the
optimization problem is unconstrained, you can use the
gradient of loss to iteratively move closer to a minimum.

I Provable: the function is convex, so these methods will
converge to a global minimum. More about this in Eisenstein
(2019) Appendix B.

48 / 99

Learning for Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

log
(

1 + exp
(
−yi · θ>φ(xi)

))
︸ ︷︷ ︸

loss(θ)

I You can efficiently implement the objective function “loss”
given your data and your features φ.

I Because it is continuous and differentiable, and the
optimization problem is unconstrained, you can use the
gradient of loss to iteratively move closer to a minimum.

I Provable: the function is convex, so these methods will
converge to a global minimum. More about this in Eisenstein
(2019) Appendix B.

49 / 99

Learning for Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

log
(

1 + exp
(
−yi · θ>φ(xi)

))
︸ ︷︷ ︸

loss(θ)

I You can efficiently implement the objective function “loss”
given your data and your features φ.

I Because it is continuous and differentiable, and the
optimization problem is unconstrained, you can use the
gradient of loss to iteratively move closer to a minimum.

I Provable: the function is convex, so these methods will
converge to a global minimum. More about this in Eisenstein
(2019) Appendix B.

50 / 99

Learning for Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

log
(

1 + exp
(
−yi · θ>φ(xi)

))
︸ ︷︷ ︸

loss(θ)

I You can efficiently implement the objective function “loss”
given your data and your features φ.

I Because it is continuous and differentiable, and the
optimization problem is unconstrained, you can use the
gradient of loss to iteratively move closer to a minimum.

I Provable: the function is convex, so these methods will
converge to a global minimum. More about this in Eisenstein
(2019) Appendix B.

51 / 99

Practical Point: Computing the Gradient

Deriving the gradient of loss with respect to θ, denoted ∇θloss, is
left as an exercise.
Hint: use the chain rule from calculus and work backward through
the computation graph on slide 47.

52 / 99

Stochastic Gradient Descent

Goal: minimize
∑N

i=1 gi(θ) with respect to θ.

Input: initial value θ, number of epochs T , learning rate α

For t ∈ {1, . . . , T}:
I Choose a random permutation π of {1, . . . , N}.
I For i ∈ {1, . . . , N}:

θ ← θ − α · ∇θgπ(i)

Output: θ

53 / 99

Reflection

We can prove that SGD will eventually get very close to a global
minimum of a convex objective function. What do you think will
happen if we apply SGD to a function that is not convex?

54 / 99

The Main Dish

55 / 99

Multinomial Logistic Regression

We can generalize LR to an arbitrary label set L.
We need:

1. A more powerful definition of feature functions.

2. An update to the probability distribution.

56 / 99

Input/Output Features

In LR, φj : V∗ → R (features only see inputs).

In MLR, fj : V∗ × L → R (features consider potential output
value, too).

I (We deliberately use “f” instead of “φ” here.)

General template:

f`,φ(x, y) = φ(x) · 1 {y = `}

E.g., if L = {sports, politics, health}, then we have separate

features f freq.
sports,vodka(x, y), f freq.

politics,vodka(x, y), and

f freq.
health,vodka(x, y).

57 / 99

Multinomial Logistic Regression

A multinomial logistic regression model is defined by:
I A collection of feature functions, denoted f1, . . . fd, each

mapping V∗ × L → R.
I The designer of the system chooses the features.

I A coefficient or “weight” for every feature, denoted θ1, . . . , θd,
each ∈ R.
I The weights are “parameters” that are chosen

automatically by applying a learning algorithm.

scoreMLR(x, y;θ) =

d∑
j=1

θjfj(x, y) = θ>f(x, y)

classifyMLR(x) = arg max
y∈L

scoreMLR(x, y;θ)

58 / 99

Geometric View of MLR

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3)

(x, y1)

(x, y4)
(x, y2)

f1

f2

59 / 99

Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3)

f1

f2

(x, y1)

(x, y4)
(x, y2)

θ · f = θ1f1 + θ2f2 = 0

60 / 99

Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3) (x, y1)

(x, y4)(x, y2) f1

f2

distance(θ · f = 0, f0) =
|θ · f0|
‖θ‖2

∝ |θ · f0|

61 / 99

Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3) (x, y1)

(x, y4)(x, y2) f1

f2

θ · f(x, y1) > θ · f(x, y3) > θ · f(x, y4) > 0 ≥ θ · f(x, y2)

62 / 99

Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3) (x, y1)

(x, y4)(x, y2) f1

f2

score(x, y1) > score(x, y3) > score(x, y4) > score(x, y2)

63 / 99

Geometric View of MLR

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3)

(x, y1)

(x, y4)
(x, y2)

f1

f2

64 / 99

Geometric View of MLR
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, f1 and f2.

(x, y3)

(x, y1)

(x, y4)
(x, y2)

f1

f2

score(x, y3) > score(x, y1) > score(x, y2) > score(x, y4)

65 / 99

Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

66 / 99

Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

First, we need to introduce a new function from vectors to vectors.

softmax (〈t1, t2, . . . , tk〉) =

〈
et1∑k
j=1 e

tj
,

et2∑k
j=1 e

tj
, . . . ,

etk∑k
j=1 e

tj

〉

=
exp t

‖ exp t‖1

Note the use of element-wise exponential:
exp(t) = 〈exp t1, exp t2, . . . , exp tk〉.

67 / 99

Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

pMLR(Y |X = x;θ) = softmax
(
〈scoreMLR(x, `;θ)〉`∈L

)

68 / 99

Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

pMLR(Y |X = x;θ) = softmax
(
〈scoreMLR(x, `;θ)〉`∈L

)
Z(x;θ) =

∑
`′∈L

exp scoreMLR(x, `′;θ)

69 / 99

Probabilistic View of MLR

Our model defines a probability distribution over the labels L.

pMLR(Y |X = x;θ) = softmax
(
〈scoreMLR(x, `;θ)〉`∈L

)
Z(x;θ) =

∑
`′∈L

exp scoreMLR(x, `′;θ)

pMLR(Y = ` |X = x;θ) =
exp scoreMLR(x, `;θ)

Z(x;θ)

70 / 99

Probabilistic View of MLR
This slide is almost identical to slide 42!

This suggests using the principle of maximum likelihood to
estimate θ:

θ∗ = arg max
θ∈Rd

n∏
i=1

pMLR(Y = yi |X = xi;θ)

= arg max
θ∈Rd

n∑
i=1

log pMLR(Y = yi |X = xi;θ)

= arg min
θ∈Rd

n∑
i=1

− log pMLR(Y = yi |X = xi;θ)︸ ︷︷ ︸
sometimes called “log loss” or “cross entropy”

71 / 99

Reflection: Computation Graph View of MLR
What do you need to change from the LR case?

ϑ

x

×
scoreLR

p M
LR

(Y
 =

 y
| x

; ϑ
)log

−classify(x)

loss(ϑ)

y

…

+

72 / 99

Learning for Multinomial Logistic Regression

θ∗ = arg min
θ∈Rd

n∑
i=1

−θ>f(xi, yi)︸ ︷︷ ︸
“hope”

+ log
∑
`∈L

exp(θ>f(xi, `))︸ ︷︷ ︸
“fear”

See slide 31; all points are the same!

73 / 99

(M)LR Tends to Overfit

If a particular feature fj is usually positive, then it always improves
the loss to increase θj .

Regularization: discourage every θj from getting too large in
magnitude.

74 / 99

Regularization

arg min
θ

loss(θ) + λ‖θ‖pp

where λ > 0 is a “hyperparameter” and p = 2 or 1.

75 / 99

`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).

I Many have argued that this is a good thing (Tibshirani, 1996);
it’s a kind of feature selection.

I Do not confuse it with data sparseness (a problem to be
overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

76 / 99

`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.

I Do not confuse it with data sparseness (a problem to be
overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

77 / 99

`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

78 / 99

`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

79 / 99

`1 Regularization
This case warrants a little more discussion:

min
w

loss(θ) + λ‖θ‖1

Note that:

‖θ‖1 =

d∑
j=1

|θj |

I This results in sparsity (i.e., many θj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at θj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

80 / 99

Reflection: Computation Graph View of MLR
What do you need to change for regularization?

ϑ

loss(ϑ)

…

+

81 / 99

MLR Learning

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form for the objective function; you must
use a numerical optimization algorithm like stochastic
gradient descent.

I MLR is powerful but expensive (Z(xi;θ)).

I Regularization is very important; we don’t actually do MLE. If
you want to be absolutely precise, you’re minimizing the
regularized log loss.

82 / 99

Digestif: Connections

Slight changes to the loss function lead to other well-known
learning methods.

I Perceptron: change “fear” to max`∈L score(x, `;θ)

I Linear support vector machine: change “fear” to
max`∈L score(x, `;θ) + (cost of substituting ` for y)

83 / 99

Digestif: Connections

Slight changes to the loss function lead to other well-known
learning methods.

I Perceptron: change “fear” to max`∈L score(x, `;θ)

I Linear support vector machine: change “fear” to
max`∈L score(x, `;θ) + (cost of substituting ` for y)

The model I presented as “MLR” has gone by other names:

I Maximum entropy model, because it is provable that
pMLR(Y |X;θ∗) is the distribution with the greatest entropy
(uncertainty about Y) under the constraint that Epf = Ẽf .
See Berger et al. (1996).

I Exponential model, because it is a member of the generalized
exponential family.

84 / 99

On Data

For machine learning methods, the math can be demanding!

This makes it easy to forget the importance of the data and how
we represent it (features).

85 / 99

On Features

Feature engineering is something some people love and others hate.

86 / 99

On Features

Feature engineering is something some people love and others hate.

There have been many attempts to automate it, either by throwing
in a huge number and letting the learner decide (e.g., via sparse
regularization), or searching for new, complex features by
combining simpler ones, or learning them “from scratch.”

87 / 99

On Features

Feature engineering is something some people love and others hate.

There have been many attempts to automate it, either by throwing
in a huge number and letting the learner decide (e.g., via sparse
regularization), or searching for new, complex features by
combining simpler ones, or learning them “from scratch.”

Responsible impact: just because you have excluded features that
you don’t want your model to know about doesn’t mean you’ve
excluded all the correlates of those features!

88 / 99

References I

Galen Andrew and Jianfeng Gao. Scalable training of `1-regularized log-linear models.
In Proc. of ICML, 2007.

Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71,
1996.

Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated
gradient. In NeurIPS, 2009.

Quinn McNemar. Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika, 12(2):153–157, 1947.

Noah A. Smith. Linguistic Structure Prediction. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, 2011. URL http://www.

morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

89 / 99

http://www.morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf
http://www.morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf

Extras

90 / 99

Cross-Validation

Remember that Â, P̂, R̂, and F̂1 are all estimates of the classifier’s
quality under the true data distribution.

I Estimates are noisy!

K-fold cross-validation:

I Partition the training set into K non-overlapping “folds”
x1, . . . ,xK .

I For i ∈ {1, . . . ,K}:
I Train on x1:n \ xi, using xi as development data.
I Estimate quality on the ith development set: Âi

I Report the average:

Â =
1

K

K∑
i=1

Âi

and perhaps also the standard error.

91 / 99

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

92 / 99

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it
isn’t. But if Â1 � Â2, we are tempted to believe otherwise.

93 / 99

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it
isn’t. But if Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

94 / 99

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it
isn’t. But if Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

Frequentist view: how (im)probable is the observed difference,
given H0 = true?

95 / 99

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it
isn’t. But if Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

Frequentist view: how (im)probable is the observed difference,
given H0 = true?

Caution: statistical significance is neither necessary nor sufficient
for research significance or practical usefulness!

96 / 99

A Hypothesis Test for Text Classifiers
McNemar (1947)

1. The null hypothesis: A1 = A2

2. Pick significance level α, an “acceptably” high probability of
incorrectly rejecting H0.

3. Calculate the test statistic, k (explained in the next slide).

4. Calculate the probability of a more extreme value of k,
assuming H0 is true; this is the p-value.

5. Reject the null hypothesis if the p-value is less than α.

The p-value is p(this observation | H0 is true), not the other way
around!

97 / 99

McNemar’s Test: Details
Assumptions: independent (test) samples and binary
measurements. Count test set error patterns:

classify1 classify1

is incorrect is correct

classify2 is incorrect c00 c10

classify2 is correct c01 c11 m · Â2

m · Â1

If A1 = A2, then c01 and c10 are each distributed according to
Binomial(c01 + c10,

1
2).

test statistic k = min{c01, c10}

p-value =
1

2c01+c10−1

k∑
j=0

(
c01 + c10

j

)
98 / 99

Other Tests

Different tests make different assumptions.

Sometimes we calculate an interval that would be “unsurprising”
under H0 and test whether a test statistic falls in that interval
(e.g., t-test and Wald test).

In many cases, there is no closed form for estimating p-values, so
we use random approximations (e.g., permutation test and paired
bootstrap test).

If you do lots of tests, you need to correct for that!

Read lots more in Smith (2011), appendix B.

99 / 99

	References

