
Natural Language Processing (CSE 517 & 447):
Vector Embeddings for Documents and Words

Noah Smith
c© 2022

University of Washington
nasmith@cs.washington.edu

Winter 2022

Readings: Eisenstein (2019) 14 and Smith (2020)

1 / 86

A Mismatch

Theories of language tend to view the data (words, sentences,
documents) and abstractions over it as symbolic or categorical.

Machine learning algorithms built on optimization thrive on a diet
of continuous data.

2 / 86

This Lecture: Documents and Words as Vectors

A common thread: we derive the vectors from a corpus (collection
of documents), with no annotation.

I Variously called “unsupervised” and “self-supervised” learning.

The situation is similar to language modeling.

3 / 86

Topic Models

I Words are not IID!
I Predictable given history: n-gram/Markov models
I Predictable given other words in the document: topic models

I Let Z = {1, . . . ,K} be a set of “topics” or “themes” that will
help us capture the interdependence of words in a document.
I Usually these are not named or characterized in advance; they

are just K different values with no a priori meaning.

I We’ll start with a classical topic model, then turn to
probabilistic ones.

4 / 86

Topic Models

I Words are not IID!
I Predictable given history: n-gram/Markov models
I Predictable given other words in the document: topic models

I Let Z = {1, . . . ,K} be a set of “topics” or “themes” that will
help us capture the interdependence of words in a document.
I Usually these are not named or characterized in advance; they

are just K different values with no a priori meaning.

I We’ll start with a classical topic model, then turn to
probabilistic ones.

5 / 86

Topic Models

I Words are not IID!
I Predictable given history: n-gram/Markov models
I Predictable given other words in the document: topic models

I Let Z = {1, . . . ,K} be a set of “topics” or “themes” that will
help us capture the interdependence of words in a document.
I Usually these are not named or characterized in advance; they

are just K different values with no a priori meaning.

I We’ll start with a classical topic model, then turn to
probabilistic ones.

6 / 86

Notation

I x is the corpus; it contains C documents

I xc is the cth document in the corpus

I `c is the length of xc (in tokens)

I N is the total count of tokens in the corpus, N =
∑C

c=1 `c

7 / 86

The Word-Document Matrix
Let A ∈ RV×C contain statistics of association between words in
V and C documents. Tiny example, three documents:

x1: yes , we have no bananas

x2: say yes for bananas

x3: no bananas , we say

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0

have 1 0 0
no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

Count matrix: [A]v,c = countxc(v) (count of word v in the cth
document)

8 / 86

Association Score

What we really want here is some way to get at “surprise.”

9 / 86

Association Score

What we really want here is some way to get at “surprise.”

One way to think about this is, is the occurrence of word v in
document c surprisingly high (or low), given what we’d expect due
to chance, if all documents were essentially similar?

10 / 86

Association Score

What we really want here is some way to get at “surprise.”

One way to think about this is, is the occurrence of word v in
document c surprisingly high (or low), given what we’d expect due
to chance, if all documents were essentially similar?

Chance (under a unigram model) would be countx(v)
N words out of

the `c words in document c.

11 / 86

Association Score

What we really want here is some way to get at “surprise.”

One way to think about this is, is the occurrence of word v in
document c surprisingly high (or low), given what we’d expect due
to chance, if all documents were essentially similar?

Chance (under a unigram model) would be countx(v)
N words out of

the `c words in document c.

Intuition: consider the ratio of observed frequency of word v in
document c (countxc(v)) to “chance” under independence

(countx(v)N · `c).

12 / 86

Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

countxc(v)
countx(v)

N · `c

]
+

=

[
log

N · countxc(v)

countx(v) · `c

]
+

where [x]+ = max(0, x). From our example:

[A]bananas,1 = log
15 · 1
3 · 6

≈ −0.18→ 0

[A]for,2 = log
15 · 1
1 · 4

≈ 1.32

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0

have 1 0 0
no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

13 / 86

A Nod to Information Theory

Pointwise mutual information for two random variables A and B:

PMI(a, b) = log
p(A = a,B = b)

p(A = a) · p(B = b)

= log
p(A = a | B = b)

p(A = a)

= log
p(B = b | A = a)

p(B = b)

14 / 86

A Nod to Information Theory

Pointwise mutual information for two random variables A and B:

PMI(a, b) = log
p(A = a,B = b)

p(A = a) · p(B = b)

The average mutual information is given by:

MI(A,B) =
∑
a,b

p(A = a,B = b) · PMI(a, b)

This comes from information theory; it is the amount of
information each r.v. offers about the other.

(Recall entropy; the amount of information or uncertainty in a
single random variable.)

15 / 86

Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

countxc(v)
countx(v)

N · `c

]
+

=

[
log

N · countxc(v)

countx(v) · `c

]
+

where [x]+ = max(0, x).
Notes:

I If a word v appears with nearly the same frequency in every
document, its row [A]v,∗ will be all nearly zero.

I If a word v occurs only in document c, their PMI ([A]v,c) will
be large and positive.

I PMI is very sensitive to rare occurrences; usually we smooth
the frequencies and filter rare words.

I One way to think about PMI: it’s telling us where a unigram
model is most wrong.

16 / 86

Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

countxc(v)
countx(v)

N · `c

]
+

=

[
log

N · countxc(v)

countx(v) · `c

]
+

where [x]+ = max(0, x).
Notes:

I If a word v appears with nearly the same frequency in every
document, its row [A]v,∗ will be all nearly zero.

I If a word v occurs only in document c, their PMI ([A]v,c) will
be large and positive.

I PMI is very sensitive to rare occurrences; usually we smooth
the frequencies and filter rare words.

I One way to think about PMI: it’s telling us where a unigram
model is most wrong.

17 / 86

Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

countxc(v)
countx(v)

N · `c

]
+

=

[
log

N · countxc(v)

countx(v) · `c

]
+

where [x]+ = max(0, x).
Notes:

I If a word v appears with nearly the same frequency in every
document, its row [A]v,∗ will be all nearly zero.

I If a word v occurs only in document c, their PMI ([A]v,c) will
be large and positive.

I PMI is very sensitive to rare occurrences; usually we smooth
the frequencies and filter rare words.

I One way to think about PMI: it’s telling us where a unigram
model is most wrong.

18 / 86

Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

countxc(v)
countx(v)

N · `c

]
+

=

[
log

N · countxc(v)

countx(v) · `c

]
+

where [x]+ = max(0, x).
Notes:

I If a word v appears with nearly the same frequency in every
document, its row [A]v,∗ will be all nearly zero.

I If a word v occurs only in document c, their PMI ([A]v,c) will
be large and positive.

I PMI is very sensitive to rare occurrences; usually we smooth
the frequencies and filter rare words.

I One way to think about PMI: it’s telling us where a unigram
model is most wrong.

19 / 86

Reflection

We could use this association matrix A as M, the embeddings
matrix in a neural language model. Can you think of some
advantanges and disadvantages of doing so?

20 / 86

Topic Models: Latent Semantic Indexing/Analysis
(Deerwester et al., 1990)

LSI/A seeks to solve (for M, s, and C):

A
V × C

≈ Â =M
V × d

× diag
d× d

(s)× C
d× C

>

where M contains “embeddings” of words, C contains
“embeddings” of documents.

[A]v,c ≈
d∑

i=1

[vv]i · [s]i · [cc]i

21 / 86

Topic Models: Latent Semantic Indexing/Analysis
(Deerwester et al., 1990)

LSI/A seeks to solve (for M, s, and C):

A
V × C

≈ Â =M
V × d

× diag
d× d

(s)× C
d× C

>

where M contains “embeddings” of words, C contains
“embeddings” of documents.

[A]v,c ≈
d∑

i=1

[vv]i · [s]i · [cc]i

This can be solved by applying singular value decomposition to A,
then truncating to d dimensions.

I M contains left singular vectors of A

I C contains right singular vectors of A

I s are singular values of A; they are nonnegative and
conventionally organized in decreasing order.

22 / 86

Truncated Singular Value Decomposition

diag(s)M
C⊤

A
=

diag(s)

M

C⊤

Â =

truncated at d:

SVD:

23 / 86

A Nod to Linear Algebra

For (not truncated) singular value decomposition
A = M× diag(s)×C>:

I The columns of M form an orthonormal basis, M are
eigenvectors of AA>, with eigenvalues s2.

I The columns of C form an orthonormal basis, C are
eigenvectors of A>A, with eigenvalues s2.

If some elements of s are zero, then A is “low rank.”

Approximating A by truncating s equates to a “low rank
approximation.”

24 / 86

LSI/A Example
d = 2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

,

bananas
for

have

no

say

we

yes

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0

have 1 0 0
no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

Words and documents in two dimensions.

25 / 86

LSI/A Example
d = 2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

,

bananas
for

have

no

say

we

yes

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0

have 1 0 0
no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

Words and documents in two dimensions.
Note how no, we, and , are all in the exact same spot. Why?

26 / 86

Understanding LSI/A

I It creates a mapping of words and documents into the same
low-dimensional space.

I Bag of words assumption (Salton et al., 1975): a document is
nothing more than the distribution of words it contains.

I Distributional hypothesis (Harris, 1954; Firth, 1957): words’
meanings are nothing more than the distribution of contexts
(here, documents) they occur in. Words that occur in similar
contexts have similar meanings.

I A is sparse and noisy; LSI/A “fills in” the zeroes and tries to
eliminate the noise.
I It finds the best rank-k approximation to A.

27 / 86

Probabilistic Topic Models

As a language model, LSI/A is kind of broken.

I It assumes the elements of A are the result of Gaussian noise.

Hofmann (1999) proposed instead to model the probability
distribution p(Xc = xc | c), for each document c.

I This is a particular kind of conditional language model.

28 / 86

Probabilistic Latent Semantic Analysis
(Hofmann, 1999)

For every document c in the corpus:

p(xc | c) =
∑

z∈{1,...,K}`c
p(xc, z | c)

p(xc, z | c) =
`c∏
i=1

ptopic(zi | c) · pword (xc,i | zi)

One way to view PLSA is that each document is generated by a
separate mixture of K unigram models.

Parameters:

I ptopic , a distribution over K topics, for each document c

I pword , a (unigram) distribution over V, for each topic

There is no closed form for the MLE!

29 / 86

A Chicken/Egg Problem

If we knew which topic each word token belonged to (i.e., which
unigram distribution pword generated it), we could use relative
frequency estimation.

If we knew the parameters ptopic and pword , we could infer the topic
of each word (i.e., which unigram distribution pword generated it).

30 / 86

“Soft Counts”

Assume for the moment a single document c of length `.

When we estimated unigram language models, everything relied on
counts of words.

Here, if we knew the counts of every word in every topic in every
document, then we’d have a closed form MLE.

p̂topic(z | c) =
count(z, ∗)

`

p̂word (v | z) =
count(z, v)

count(z, ∗)

31 / 86

“Soft Counts”

Assume for the moment a single document c of length `.

When we estimated unigram language models, everything relied on
counts of words.

Here, if we knew the counts of every word in every topic in every
document, then we’d have a closed form MLE.

p̂topic(z | c) =
count(z, ∗)

`

p̂word (v | z) =
count(z, v)

count(z, ∗)

Instead, we will replace counts with “soft counts.”

32 / 86

Expectation Maximization

Many ways to understand it. Today, we’ll stick with a simple one.

Start with arbitrary (e.g., random) parameter values. Alternate
between two steps:

I E step: calculate the posterior distribution over each word’s
topic assignment.

I M step: treat the posteriors as soft counts, and re-estimate
the model.

Doing this is a kind of hill-climbing on the likelihood of the
observed data.

33 / 86

PLSA: M Step

Assume each word xi in document c is fractionally assigned to
every topic z with (known) value qc,i(z).

34 / 86

PLSA: M Step

Assume each word xi in document c is fractionally assigned to
every topic z with (known) value qc,i(z).

p̂topic(z | c) =
∑`c

i=1 qc,i(z)

`c

=
soft count of c’s words assigned topic z

size of c

35 / 86

PLSA: M Step

Assume each word xi in document c is fractionally assigned to
every topic z with (known) value qc,i(z).

p̂topic(z | c) =
∑`c

i=1 qc,i(z)

`c

=
soft count of c’s words assigned topic z

size of c

p̂word (v | z) =
∑

c

∑
i:xc,i=v qc,i(z)∑

c

∑`c
i=1 qc,i(z)

=
soft count of v tokens assigned topic z

soft count of all tokens assigned topic z

36 / 86

PLSA: M Step

Assume each word xi in document c is fractionally assigned to
every topic z with (known) value qc,i(z).

p̂topic(z | c) =
∑`c

i=1 qc,i(z)

`c

=
soft count of c’s words assigned topic z

size of c

p̂word (v | z) =
∑

c

∑
i:xc,i=v qc,i(z)∑

c

∑`c
i=1 qc,i(z)

=
soft count of v tokens assigned topic z

soft count of all tokens assigned topic z

Note that the pword parameters are shared across the corpus; all of
the documents influence our beliefs about the others through these
distributions.

37 / 86

PLSA: E Step

Assume we have the parameters ptopic and pword .

Calculate, for every document c, for every word xi in c, its
“membership” to every topic:

qc,i(z) =
ptopic(z | c) · pword (xc,i | z)∑
z′ ptopic(z

′ | c) · pword (xc,i | z′)

=
joint probability of xc,i and z, given c

marginal probability of xc,i given c

Each word gets to vote on topics; it can spread its vote fractionally
across them, but the votes sum to 1.

38 / 86

Expectation Maximization

Very general technique for learning with incomplete data. It’s been
invented over and over in different fields.

Requires that you specify a generative model with two kinds of
variables: observed (here, documents and words in each
document), and latent (here, topic for each word). EM (locally)
maximizes the likelihood of the observed data.

Like gradient descent for neural networks, we are (usually)
optimizing a non-convex function. Many tricks exist to try to cope
with that.

In NLP, EM has often been associated with unsupervised learning.

39 / 86

Remarks

I Like LSI/A, PLSA “squeezes” the relationship between words
and contexts (documents) through topics.

I A document is now characterized as a mixture of
corpus-universal topics (each of which is a unigram model):
ptopics(∗ | c) is a vector representation of xc!

I Topic mixtures can be incorporated into language models; see
Iyer and Ostendorf (1999), for example.

I Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A
can give negative values!).

40 / 86

But ...

I PLSA cannot assign probability to a text not in the training
corpus; it only defines conditional distributions over words
given texts in that corpus. Recall that ptopic conditions on a
specific document!

I The next model overcomes this problem by adding another
level of randomness: ptopic becomes a random variable, not a
parameter.

41 / 86

Quick Probability Review

Consider a joint distribution over two random variables A and B.
The marginal distribution over A is usually given as:

p(A = a) =
∑
b

p(A = a,B = b)

But if B is continuous, then the sum becomes an integral:

p(A = a) =

∫
b
p(A = a,B = b)db

42 / 86

Latent Dirichlet Allocation
(Blei et al., 2003)

Widely used in text exploration (e.g., social science research).

p(xc) =

∫
ptopic

∑
z∈{1,...,K}`c

p(xc, z,ptopic) dptopic

p(xc, z,ptopic) = Dirα(ptopic)

`c∏
i=1

ptopic(zi) · pword (xc,i | zi)

Parameters:

I α ∈ RK
>0, a prior over topic distributions

I pword (∗ | z),∀z ∈ {1, . . . ,K}
There is no closed form for the MLE!

43 / 86

“Being Bayesian”

This is another topic that could warrant an entire quarter; see
Cohen (2016).

A summary of the Bayesian philosophy in NLP:

I Because we have finite data, we should be uncertain about
every estimated model parameter.

I Bayes’ rule gives us a way to manage that uncertainty, if we
can define a prior distribution over model parameters.

I Inference is a “simple matter” of estimating posterior
distributions.
I But exact inference is almost never tractable, so we need

approximations.
I There are many of these, and they tend to be expensive.
I Some of them look like EM, some don’t.
I “Neural variational inference” methods are the latest to

generate excitement (e.g., Miao et al., 2016).

44 / 86

Understanding LDA and other Topic Models

Consider a simple case where V = 3. All unigram distributions,
and hence all documents, reside in this triangle (white circles):

v1

v2v3

[0, 0, 1]

[0, 1, 0][1, 0, 0]

45 / 86

Understanding LDA and other Topic Models
Consider a simple case where V = 3. All unigram distributions,
and hence all documents, reside in this triangle (white circles):

v1

v2v3

[0, 0, 1]

[0, 1, 0][1, 0, 0]

Unigram model estimates one “topic” for the whole corpus.
46 / 86

Understanding LDA and other Topic Models
Consider a simple case where V = 3. All unigram distributions,
and hence all documents, reside in this triangle (white circles):

v1

v2v3

z1

z2
z3

PLSA chooses a topic simplex within the larger one and places
each document at one point in the topic simplex.

47 / 86

Understanding LDA and other Topic Models
Consider a simple case where V = 3. All unigram distributions,
and hence all documents, reside in this triangle (white circles):

v1

v2v3

z1

z2

PLSA chooses a topic simplex within the larger one and places
each document at one point in the topic simplex.

48 / 86

Understanding LDA and other Topic Models

Consider a simple case where V = 3. All unigram distributions,
and hence all documents, reside in this triangle (white circles):

v1

v2v3

z1

z2
z3

v1

v2v3

z1

z2

LDA estimates a distribution in the “topic simplex” for each
document, given its words (hence, a posterior distribution), and so
can generalize to new documents.

49 / 86

LDA

Topics discovered by LDA-like models continue to be interesting:

I As a way of interacting with and exploring large corpora
without reading them.

I A demo you can play with: https:
//mimno.infosci.cornell.edu/jsLDA/jslda.html
I But this is hard to evaluate!

I As a “pivot” for relating to other variables like author
(Rosen-Zvi et al., 2004), geography (Eisenstein et al., 2010),
and many more.

LDA is also extremely useful as a pedagogical gateway to Bayesian
modeling of text (and other discrete data).

I It’s right on the boundary between “easy” and “hard”
Bayesian models.

50 / 86

https://mimno.infosci.cornell.edu/jsLDA/jslda.html
https://mimno.infosci.cornell.edu/jsLDA/jslda.html

Local Contexts: Distributional Semantics

Within NLP, emphasis has shifted from topics to the relationship
between v ∈ V and more local contexts.

For example: LSI/A, but replace documents with “nearby words.”
This is a way to recover word vectors that capture distributional
similarity.

51 / 86

A Word-Context Matrix

Let A ∈ RV×C contain statistics of association between words in
V and symbols that occur just before them

Tiny example, three sentences:

x1: yes , we have no bananas

x2: say yes for bananas

x3: no bananas , we say

© , bananas for have no say we yes

, 0 0 1 0 0 0 0 0 1
bananas 0 0 0 1 0 2 0 0 0

for 0 0 0 0 0 0 0 0 1
have 0 0 0 0 0 0 0 1 0

no 1 0 0 0 1 0 0 0 0
say 1 0 0 0 0 0 0 1 0
we 0 2 0 0 0 0 0 0 0

yes 1 0 0 0 0 0 1 0 0

Count matrix: [A]v,v′ = countx(v
′v)

52 / 86

Word Vector Models

These models are designed to “guess” a word at position i given a
word at a position in {i− w, . . . , i− 1} ∪ {i+ 1, . . . , i+ w}.

Sometimes such methods are used to “pre-train” word vectors used
in other, richer models (like neural language models).

53 / 86

Word2vec
(Mikolov et al., 2013a,b)

Two models for word vectors designed to be computationally
efficient.
I Continuous bag of words (CBOW): p(v | c)

I Similar in spirit to the feedforward neural language model we
saw in the language model lecture (Bengio et al., 2003)

I Skip-gram: p(c | v)
It turns out these are closely related to matrix factorization as in
LSI/A (Levy and Goldberg, 2014)!

54 / 86

Skip-Gram Model

p(C = c | X = v) =
1

Zv
exp c>c vv

I Two different vectors for each element of V: one when it is
“v” (v) and one when it is “c” (c).

I This should remind you of a neural network; SGD on the
likelihood function is the conventional approach to estimating
the vectors.

I Normalization term Zv is expensive, so approximations are
required for efficiency.

I Can expand this to be over the whole sentence or document,
or otherwise choose which words “count” as context.

55 / 86

Word Vector Evaluations

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

max
v∈V

cos (vv,−vwalking + vwalked + veating)

Note: The above line contains corrections relative to the
video, and the textbook.

56 / 86

Word Vector Evaluations

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

max
v∈V

cos (vv,−vwalking + vwalked + veating)

Note: The above line contains corrections relative to the
video, and the textbook.

57 / 86

Word Vector Evaluations

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman,

carpet, hallway}

I Syntactic analogies, e.g., “walking is to walked as eating is to
what?” Solved via:

max
v∈V

cos (vv,−vwalking + vwalked + veating)

Note: The above line contains corrections relative to the
video, and the textbook.

58 / 86

Word Vector Evaluations

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

max
v∈V

cos (vv,−vwalking + vwalked + veating)

Note: The above line contains corrections relative to the
video, and the textbook.

59 / 86

Warning!

For both document vectors (e.g., from topic models) and word
vectors, it’s often interesting to visualize what the model has
learned and inspect the space. Examples:

I List the words most strongly associated with each topic

I Start with a seed word and find its nearest neighbors in vector
space

Human brains are uncannily good at finding patterns, even when
they aren’t there. Manual inspection of learned representations will
make you feel good, but it doesn’t mean your model is working
well!

60 / 86

Extrinsic Evaluations

1. Use large unannotated corpus to get your word vectors
(sometimes called pretraining).

2. Use them in a text classifier (or some other NLP system).
Two options:
I Plug in word vectors as “frozen” features, and estimate the

other parameters of your model.
I Treat them as parameters of the text classifier; pretraining

gives initial values, but they get updated, or “finetuned”
during supervised learning.

3. Does that system’s performance improve?

61 / 86

Taking Stock

So far, we’ve seen:

I Documents as vectors (LSI/A, then topic distributions)

I Words as vectors (LSI/A, then as parameters to the skip-gram
model)

Next, a different approach to encoding words based on hierarchical
clustering.

62 / 86

Brown Clustering
(Brown et al., 1992)

A greedy way to hierarchically cluster words based on distributional
similarity.

63 / 86

Brown Clustering: Sketch of the Algorithm

Given: K (the desired number of clusters)

I Initially, every word v belongs to its own cluster, so that
zi = xi.

I Repeat V −K times:
I Find the pairwise merge of two clusters zA and zB that gives

the greatest value for p(x1:n, z1:n).
I Assign every word in cluster zA or zB to new cluster znew .

It turns out this is equivalent to using PMI on clusters of adjacent
words to score potential merges.

This is very expensive; Brown et al. (1992) and others (later)
introduced tricks for efficiency. See Liang (2005) and Stratos et al.
(2014), for example.

64 / 86

Added Bonus to Brown Clusters

If you keep track of every merge, you have a hierarchical clustering.

Each cluster is a binary tree with words at the leaves and internal
nodes corresponding to merges.

Indexing the merge-pairs by 0 and 1 gives a bit-string for each
word; prefixes of each word’s bit string correspond to the
hierarchical clusters it belongs to.

These can be seen as variable-length, binary word embeddings!

65 / 86

Brown Clusters from 56,000,000 Tweets
http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

lmao
lmfao
lmaoo
lmaooo
hahahaha

ha

haha
hahaha
hehe

hahahaha

0001

0
1

10101

u
yu
yuh
yhu
uu
yuu
yew
y0u
yuhh

yall
y'all
dey
ya'll

chu yal

0 1

tryna
gon

finna
bouta
trynna

gonna
gunna
gona
gna
guna
gnna

001100

0
1

soo
sooo
soooo
sooooo
soooooo
sooooooo

011011

so
s0
-so
so-
$o /
so //
so

0 1

too
tooo
toooo
tooooo
toooooo

immensely
tooooooo

tremendously
0

1

011

;)
:p
:-)
xd
;-)
;d

:)
(:
=)
:))
:]

100101

0
1

1110101

66 / 86

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

Stepping Back

Big ideas:

I This is unsupervised learning: all you need is lots of raw text
(no labels!)

I Large corpora → powerful word representations (the
distributional hypothesis from linguistics, brought to life
through engineering)

I It’s all about the relationship between words and their contexts

67 / 86

The Main Dish

68 / 86

Preliminaries

Token: an instance of a word observed in text

Type: the word in the abstract

(There are two tokens of type in above.)

69 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector

I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

70 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector

I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

71 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector

I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

72 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector

I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

73 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector

I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

74 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector
I Learned as parameters of a neural language model

I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

75 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector
I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier

I Learned using methods discussed in this lecture (LSI/A,
skip-gram, clustering)

76 / 86

How to Represent an English Word in Code

1. Strings: apple → "apple" ; banana → "banana"

2. Integers: apple → 211; banana → 633

3. One-hot vector: apple → [0, . . . , 0︸ ︷︷ ︸
210 0s

, 1, 0, . . .];

banana → [0, . . . , 0︸ ︷︷ ︸
632 0s

, 1, 0, . . .]

4. Continuous vector
I Learned as parameters of a neural language model
I Learned as parameters of a neural text classifier
I Learned using methods discussed in this lecture (LSI/A,

skip-gram, clustering)

77 / 86

What’s Wrong?

Words’ meanings, and the signals they give for different tasks,
change in different contexts.

All of these models assume the same vector for every token of type
v.

78 / 86

Embeddings from Language Models (ELMo)
(Peters et al., 2018)

Why not give every word token (in context) its own vector?

I To do that, we need a function that maps contexts to vectors,
including ones we have never seen before (so it can’t be a
table lookup).

I An RNN language model can do that, for the entire left
context.
I si is xi’s history. si+1 = frecurrent(exi

, si) is a
(left-)contextualized embedding of the token xi.

I Optional: to get the right-context, run an RNN language
model from right to left, and extract the analogous state
vector just after reading xi. Concatenate the two.

I On extrinsic evaluations, this method gave big improvements
to state of the art systems.

79 / 86

Bidirectional Encoder Representations from Transformers
(BERT)
(Devlin et al., 2019)

BERT—variants of which are currently used almost everywhere
people are doing NLP—advanced over ELMo in several ways:

I Train on more data.

I Replace RNN architecture with transformer (deep model
based on self-attention, mentioned last time)

I Rather than training left-to-right and right-to-left language
models, train a “masked” language model:

max
ν

∑
i

log pν

(
x

(complete)
i | x(masked)

i

)

where x
(masked)
i is a sequence with 15% of its words

randomly hidden. So, BERT is trained to predict some words
in a sentence given others, with no regard for order.

80 / 86

Unwanted Associations

Always remember that a learned system is the product of both the
learning algorithm and the data it was trained on.

Large corpora come from human societies, and those societies’
assumptions and stereotypes will likely be picked up in word
embeddings.

Bolukbasi et al. (2016) explored this in models trained on news
articles, projecting words onto a “he–she” axis and finding
considerable evidence for learned stereotypes.

They, and many since, have been developing methods for
“debiasing” these methods.

81 / 86

Reflection

Given what you know about NLP so far, do you think it matters
that learned representations of language might encode stereotypes?
What might be the effects?

82 / 86

Current Research

I More data, deeper networks.

I Pretrain on alternative tasks to language modeling and
masked language modeling, e.g., machine translation, or
collections of tasks.

I Designing a “curriculum” that changes data and/or tasks over
time.

I “Probing” representations to determine the extent to which
various linguistic, commonsense, world, or domain knowledge
is captured by the representations.

83 / 86

References I

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3(Feb):
1137–1155, 2003. URL
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T.
Kalai. Man is to computer programmer as woman is to homemaker? debiasing
word embeddings. In NeurIPS, 2016.

Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–479, 1992.

Shay Cohen. Bayesian Analysis in Natural Language Processing. Synthesis Lectures on
Human Language Technologies. Morgan and Claypool, 2016.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In Proc.
of NAACL, 2019. URL https://www.aclweb.org/anthology/N19-1423.

Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019.

84 / 86

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.aclweb.org/anthology/N19-1423

References II

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith, and Eric P. Xing. A latent
variable model for geographic lexical variation. In Proc. of EMNLP, 2010.

J. R. Firth. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic
Analysis, pages 1–32. Blackwell, 1957.

Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proc. of SIGIR, 1999.

Rukmini M. Iyer and Mari Ostendorf. Modeling long distance dependence in language:
Topic mixtures versus dynamic cache models. Speech and Audio Processing, IEEE
Transactions on, 7(1):30–39, 1999.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In NeurIPS, 2014.

Percy Liang. Semi-supervised learning for natural language. Master’s thesis,
Massachusetts Institute of Technology, 2005.

Yishu Miao, Lei Yu, and Phil Blunsom. Neural variational inference for text
processing. In Proc. of ICML, 2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In Proceedings of ICLR, 2013a. URL
http://arxiv.org/pdf/1301.3781.pdf.

85 / 86

http://arxiv.org/pdf/1301.3781.pdf

References III

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NeurIPS,
2013b. URL http://papers.nips.cc/paper/

5021-distributed-representations-of-words-and-phrases-and-their-compositionality.

pdf.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of NAACL, 2018.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The
author-topic model for authors and documents. In Proc. of UAI, 2004.

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

Noah A. Smith. Contextual word representations: Putting words into computers.
CACM, 2020. URL https://arxiv.org/pdf/1902.06006.

Karl Stratos, Do-kyum Kim, Michael Collins, and Daniel Hsu. A spectral algorithm for
learning class-based n-gram models of natural language. In Proc. of UAI, 2014.

86 / 86

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://arxiv.org/pdf/1902.06006

	References

