
Natural Language Processing (CSE 517 & 447):
Weighted Finite-State Transducers

Noah Smith
c© 2022

University of Washington
nasmith@cs.washington.edu

Winter 2022

Readings: Eisenstein (2019) 9.0–9.1

1 / 59



Motivation

I Dominant perspective in NLP in the 1970s–80s: formal
language theory

I Engineering approach: expert-crafted, formally constrained,
purely symbolic systems

I Relevance today: computational models of morphology

2 / 59



Morphology
Extensive overview: Bender (2013)

race → races
race → racing
race → raced

3 / 59



Morphology
Extensive overview: Bender (2013)

grace → graceful
graceful → gracefully

grace → disgrace
disgrace → disgraceful

disgraceful → disgracefully
friend → unfriend

Obama → Obamacare

4 / 59



Morphology
Extensive overview: Bender (2013)

uygarlaştıramadıklarımızdanmışsınızcasına
“(behaving) as if you are among those whom we could not civilize”

5 / 59



Reflection

What (natural) languages do you know? What are some examples
of the morphology in those languages?

6 / 59



Aperitif: Finite-State Automata

A finite-state automaton (plural “automata”) consists of :

I a finite alphabet of input symbols, Σ

I a finite set of states, Q

I a start state, q0 ∈ Q
I a set of final states, F ⊆ Q
I a transition function that maps a state and a symbol (or an

empty string, denoted ε) to a set of states,
δ : Q× (Σ ∪ {ε})→ 2Q

We visualize an FSA with a state diagram.

7 / 59



Aperitif: Finite-State Automata

A finite-state automaton (plural “automata”) consists of (toy
example in blue):

I a finite alphabet of input symbols, Σ Σ = {a, b}
I a finite set of states, Q Q = {q0, q1}
I a start state, q0 ∈ Q q0

I a set of final states, F ⊆ Q F = {q1}
I a transition function that maps a state and a symbol (or an

empty string, denoted ε) to a set of states,
δ : Q× (Σ ∪ {ε})→ 2Q

δ =


(q0, a) → {q0},
(q0, b) → {q1},
(q1, a) → ∅,
(q1, b) → {q1}


We visualize an FSA with a state diagram.

8 / 59



State Diagram for our Toy Example FSA

I Σ = {a, b}
I Q = {q0, q1}
I F = {q1}

I δ =


(q0, a) → {q0},
(q0, b) → {q1},
(q1, a) → ∅,
(q1, b) → {q1}



9 / 59



FSAs and their Languages

I A language is a set of strings; for FSA F we denote by L(F)
the set of strings it accepts.

I Regular languages: the set of languages recognizeable by
FSAs.

I A path through the FSA F serves as a proof that the path’s
string is in L(F).

I An FSA is deterministic (a “DFA”) if there is exactly one path
per string in L(F).

I Given DFA F and a string of length n, we can check
membership in L(F) in O(n) time and O(1) space.

10 / 59



Nondeterministic FSA

q0 q1

q2

a
b

b

a, bb

a, b

Accepts any string of as and bs that includes at least one b.

11 / 59



Some Theoretical Properties of Regular Languages

I Closed under intersection, union, subtraction, concatenation,
negation, Kleene closure, reversal, and more operations.

I There things they cannot do! E.g., counting. anbn is not a
regular language. The pumping lemma is a formal tool used
to prove that a language is not regular.

I Any nondeterministic FSA can be mechanically transformed
into a deterministic one with the same language, but the
number of states may explode.

12 / 59



NDFA and DFA with the same language.

q0 q1

q2

a
b

b

a, bb

a, b

q0

qf

a

b

a, b

13 / 59



How can we use it?

“Vocabulary machine”: an FSA whose language includes all (and
only) the words in a language (e.g., English). (Σ is the set of
characters used in the language.)

Advantage over a simple brute-force list: encode rules that let us
generate new words (e.g., Clintonian, Trumpism,
coronafuckingvirus).

14 / 59



Example
Eisenstein (2019) figure 9.2 (p. 187)

15 / 59



Adding Weights

A powerful generalization is the weighted FSA (WFSA), which
augments every path with a score. A WFSA consists of:

I a finite alphabet of input symbols, Σ

I a finite set of states, Q

I an initial weight function, λ : Q→ R
I a final weight function, ρ : Q→ R
I a transition function that weights maps a state pair and a

symbol (or ε), δ : Q× (Σ ∪ {ε})×Q→ R

16 / 59



Reflection

Can you show how an unweighted FSA is a special case of a
WFSA? Hint: imagine that there are only two values that λ, ρ,
and δ can map to, 0 and −∞.

17 / 59



Scoring a Path

Consider a path of n transitions, q0
x1→ q1

x2→ q2 · · · qn−1
xn→ qn.

The score of the path is given by

λ(q0) +

(
n∑

i=1

δ(qi−1, xi, qi)

)
+ ρ(qn)

You can think of weights as “costs” and imagine trying to find the
minimum-cost path through a WFSA for a given string x.

18 / 59



Reflection

Can you think of a good use for “costs” or scores associated with
the words in our vocabulary machine’s language?

19 / 59



The Main Dish

20 / 59



Weighted Finite-State Transducers

WFSTs encode weighted relations between strings. They consist
of:

I a finite alphabet of input symbols, Σ

I a finite alphabet of output symbols, Ω

I a finite set of states, Q

I an initial weight function, λ : Q→ R
I a final weight function, ρ : Q→ R
I a transition function that weights maps a state pair and a pair

of symbols (or ε), δ : Q× (Σ ∪ {ε})× (Ω ∪ {ε})×Q→ R

21 / 59



Reflection

WFSTs generalize unweighted FSTs, WFSAs, and unweighted
FSAs!
Can you sketch out a way to convert any of those into a WFST?

22 / 59



Example of a WFST

q0 q1

q2

a/a, c/c : 0

b/ε : 0

a/c : log 2

b/ε : 0

a/a, c/c : 0

b/ε : 0

c/a : log 3

23 / 59



Properties of WFSTs

I If you strip away either the inputs or the outputs, you get a
WFSA and the language is regular.

I Most important property: WFSTs are closed under
composition. Consider the unweighted case.
I Let F be an FST encoding pairs F ⊆ Σ∗ × Γ∗.
I Let G be an FST encoding pairs G ⊆ Γ∗ × Ω∗.
I Then G ◦ F denotes
{(x, z) | ∃y ∈ Γ∗, (x,y) ∈ F ∧ (y, z) ∈ G}.

I There is an FST that encodes G ◦ F .

24 / 59



Illustrating Composition

q0 q1
a:ε

*

q3 ¬a

*

q2
ε:a

q0 q1
b:ε

*

q4 ¬b

*

q2
ε:b

F maps aα to αa and (¬a)α to itself:

G maps bα to αb and (¬b)α to itself:

25 / 59



Illustrating Composition

q0 q1
a:ε

*

q3 ¬a

*

q2
ε:a

q0 q1
b:ε

*

q4 ¬b

*

q2
ε:b

F maps aα to αa and (¬a)α to itself:

G maps bα to αb and (¬b)α to itself:

We can implement both G ◦ F and F ◦ G by applying FST
composition, and both will be FSTs.

26 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc

bad

def

27 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc bca

bad

def

28 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc bca cab

bad

def

29 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc bca cab abc

bad

def

30 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc bca cab abc bca

bad

def

31 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc bca cab abc bca

bad bad adb adb dba

def

32 / 59



Illustrating Composition

output of . . .
input F G ◦ F G F ◦ G
abc bca cab abc bca

bad bad adb adb dba

def def def def def

33 / 59



(W)FST as a Declarative System

For convenience, we talk about an “input” and an “output” string,
but the same model can also be thought of as:

I Mapping output strings to input strings

I Recognizing pairs of strings

I Generating pairs of strings

You should think of FSTs as primarily a declarative framework (not
a procedure).

Avoid this confusion: FSTs are not functions from inputs to
outputs; an input string can pair with more than one output string
(and vice versa).

34 / 59



Putting WFSTs to Work

Levenshtein edit distance: what’s the minimum number of
single-character deletions, insertions, or substitutions to change x
into x′?

You only need one state! The classic dynamic programming
algorithm emerges when you apply conventional shortest-path
algorithms.

35 / 59



Levenshtein Distance WFST, Σ = {a, b}

q0

a/a : 0
b/b : 0

a/ε : 1
b/ε : 1

ε/a : 1
ε/b : 1

a/b : 1
b/a : 1

no change, no cost

deletions cost 1

insertions cost 1

substitutions cost 1

λ(q0) = ρ(q0) = 0

36 / 59



Putting WFSTs to Work

Problem: surface variation in words hides semantic (near)
equivalence. E.g., the subtle differences among {invite, invited,
inviting, invites} do not matter for many applications.

37 / 59



Putting WFSTs to Work

Problem: surface variation in words hides semantic (near)
equivalence. E.g., the subtle differences among {invite, invited,
inviting, invites} do not matter for many applications.

Porter (1980) stemmer: an algorithm that strips suffixes from
English words (without “knowing” any words) according to a set of
rules, such as:

-sses → -ss
-ies → -i

-ss → -ss OR -s → ε

38 / 59



Putting WFSTs to Work

Problem: surface variation in words hides semantic (near)
equivalence. E.g., the subtle differences among {invite, invited,
inviting, invites} do not matter for many applications.

Stemming lets a system abstract away from words a bit, so that
(e.g.) a search engine query for parties where cats are invited will
match documents with invite a cat to a party as well.

39 / 59



Putting WFSTs to Work

Problem: surface variation in words hides semantic (near)
equivalence. E.g., the subtle differences among {invite, invited,
inviting, invites} do not matter for many applications.

Stemming lets a system abstract away from words a bit, so that
(e.g.) a search engine query for parties where cats are invited will
match documents with invite a cat to a party as well.

(Today, people use data-driven methods like byte-pair encoding
(Sennrich et al., 2016) to segment words into pieces, sometimes
called “wordpieces.”)

40 / 59



What about today?

Finite-state transducers (sometimes weighted, sometimes not) are
arguably the best way to encode the morphological systems of
many languages.

Goal: map between words we see in text (“surface” forms) and
morphological analyses into a lemma or base/root form of the word
plus “features.”

41 / 59



What about today?

Finite-state transducers (sometimes weighted, sometimes not) are
arguably the best way to encode the morphological systems of
many languages.

Goal: map between words we see in text (“surface” forms) and
morphological analyses into a lemma or base/root form of the word
plus “features.”

Example from Spanish (surface ↔ analysis):

canto ↔ cantar+Verb+PresentIndicative+1stPerson+Singular
como ↔ comer+Verb+PresentIndicative+1stPerson+Singular

comes ↔ comer+Verb+PresentIndicative+2ndPerson+Singular

42 / 59



What about today?

Finite-state transducers (sometimes weighted, sometimes not) are
arguably the best way to encode the morphological systems of
many languages.

Goal: map between words we see in text (“surface” forms) and
morphological analyses into a lemma or base/root form of the word
plus “features.”

Example from Spanish (surface ↔ analysis):

canto ↔ cantar+Verb+PresentIndicative+1stPerson+Singular
como ↔ comer+Verb+PresentIndicative+1stPerson+Singular

comes ↔ comer+Verb+PresentIndicative+2ndPerson+Singular

If you use a (W)FST, you can invert input and output and use the
same model for analysis and generation!

43 / 59



Example
Eisenstein (2019) figure 9.7 (p. 195)

44 / 59



Designing an FST for Morphology: Notes

The challenge is to avoid both under- and over-generation. E.g.,
we want feet/foot+Plural and beets/beet+Plural, but not
foots/foot+Plural or beet/boot+Plural!

45 / 59



Designing an FST for Morphology: Notes

Because FSTs encode relations, we can elegantly handle optionality
(e.g., colours/color+Noun+Plural and colors/color+Noun+Plural)
and ambiguity (e.g., bears/bear+Noun+Plural and
bears/bear+Verb+Present+3rdPerson+Singular).

46 / 59



Designing an FST for Morphology: Notes

Because of closure under composition, union, concatenation, etc.,
you can buid separate modules for different morphology rules, or
parts of the vocabulary.

47 / 59



Designing an FST for Morphology: Notes

Usually some parts are “lexicons” or FSTs that encode sets of
words to which the same rules are applied (e.g., “-er verbs” in
French).

48 / 59



Designing an FST for Morphology: Notes

It’s hard to avoid the writing system (orthography) of a language;
some of your rules will probably be more about writing conventions
than the language as it is spoken. E.g., English past tense adds -ed
to a verb’s base form, but in the writing system we don’t do this if
the word ends in silent e: bake becomes baked, not bakeed.

49 / 59



Linguistic Note
Examples curated by Fokkens (2009)

Just a few of the phenomena that are less trivial to handle with
FSTs:

I Transfixation, e.g., Maltese has the root ktb, from which are
formed words like kiteb (“he wrote”), kitbu (“they wrote”),
miktub (“written”), ktieb (“book”), kotba (“books”), and
more (Crysmann, 2006)

I Subtraction, e.g., Koasati has singular pitaf-fi-n and plural
pit-li-n (“to slice up in the middle”) and acokcana:-kaln
singular and acokcan-ka-n plural (“to quarrel with someone”)
(Sproat, 1992)

I Reduplication, e.g., Indonesian has orang (“man”) and orang
orang (“men”) (Crysmann, 2006)

50 / 59



Linguistic Note
Examples curated by Fokkens (2009)

Just a few of the phenomena that are less trivial to handle with
FSTs:

I Transfixation, e.g., Maltese has the root ktb, from which are
formed words like kiteb (“he wrote”), kitbu (“they wrote”),
miktub (“written”), ktieb (“book”), kotba (“books”), and
more (Crysmann, 2006)

I Subtraction, e.g., Koasati has singular pitaf-fi-n and plural
pit-li-n (“to slice up in the middle”) and acokcana:-kaln
singular and acokcan-ka-n plural (“to quarrel with someone”)
(Sproat, 1992)

I Reduplication, e.g., Indonesian has orang (“man”) and orang
orang (“men”) (Crysmann, 2006)

51 / 59



Linguistic Note
Examples curated by Fokkens (2009)

Just a few of the phenomena that are less trivial to handle with
FSTs:

I Transfixation, e.g., Maltese has the root ktb, from which are
formed words like kiteb (“he wrote”), kitbu (“they wrote”),
miktub (“written”), ktieb (“book”), kotba (“books”), and
more (Crysmann, 2006)

I Subtraction, e.g., Koasati has singular pitaf-fi-n and plural
pit-li-n (“to slice up in the middle”) and acokcana:-kaln
singular and acokcan-ka-n plural (“to quarrel with someone”)
(Sproat, 1992)

I Reduplication, e.g., Indonesian has orang (“man”) and orang
orang (“men”) (Crysmann, 2006)

52 / 59



Linguistic Note
Examples curated by Fokkens (2009)

Just a few of the phenomena that are less trivial to handle with
FSTs:

I Transfixation, e.g., Maltese has the root ktb, from which are
formed words like kiteb (“he wrote”), kitbu (“they wrote”),
miktub (“written”), ktieb (“book”), kotba (“books”), and
more (Crysmann, 2006)

I Subtraction, e.g., Koasati has singular pitaf-fi-n and plural
pit-li-n (“to slice up in the middle”) and acokcana:-kaln
singular and acokcan-ka-n plural (“to quarrel with someone”)
(Sproat, 1992)

I Reduplication, e.g., Indonesian has orang (“man”) and orang
orang (“men”) (Crysmann, 2006)

53 / 59



Notable NLP Tools

I Foma: https://fomafst.github.io (designed for manual
programing of FSTs; Hulden, 2009; see also Beesley and
Karttunen, 2003)

I OpenFST: http://www.openfst.org/ (designed for WFST
operations)

I EpiTran: grapheme-to-phoneme conversion for lots of
languages (Mortensen et al., 2018)

54 / 59

https://fomafst.github.io
http://www.openfst.org/


Reflection

The Yiddish language is conventionally written in a variant of the
Hebrew alphabet, but it can also be transliterated into the Latin
alphabet we use for English. The former is written right-to-left, the
latter left-to-right.
Assuming we keep characters in the order they appear on a printed
page, could we use a (W)FST to map Yiddish words in either
alphabet into the other?

55 / 59



Cautionary Note

A computational model of a natural language’s morphology
probably encodes:

I The rules as known to one particular community of speakers
(often a privileged one)

I Orthographic conventions of one such community

But a language (and writing) vary a lot across communities of its
users.

Ask: who was/is this system built for?

56 / 59



Digestif: Remarks

Current NLP research is not very focused on finite-state methods,
but they are worth knowing about because:

I For some language problems, you can manually program a
nearly perfect solution if you choose the right formalism and
work hard for good coverage.

I Morphology is a huge challenge in some languages; the
number of possible words can be large, and many won’t
appear in text collections.

I Later, you’ll hear me say that some methods are
“uninterpretable” and “not formally understood.” WFSTs are
the opposite of that!

57 / 59



References I

Kenneth R. Beesley and Lauri Karttunen. Finite-State Morphology: Xerox Tools and
Techniques. CSLI, Stanford, 2003.

Emily M. Bender. Linguistic Fundamentals for Natural Language Processing: 100
Esentials from Morphology and Syntax. Morgan and Claypool, 2013.

Berthold Crysmann. Foundations of language science and technology: Morphology,
2006. URL
http://www.coli.uni-saarland.de/~hansu/courses/FLST05/schedule.html.

Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019.

Antske Fokkens. Introduction to morphology, 2009. URL
https://carrerainglesuce.files.wordpress.com/2019/05/morphology.pdf.

Mans Hulden. Foma: a finite-state compiler and library. In Proc. of EACL, 2009.

David R. Mortensen, Siddharth Dalmia, and Patrick Littell. Epitran: Precision G2P for
many languages. In Proc. of LREC, 2018.

M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. In Proc. of ACL, 2016.

Richard Sproat. Morphology and Computation. MIT Press, 1992.

58 / 59

http://www.coli.uni-saarland.de/~hansu/courses/FLST05/schedule.html
https://carrerainglesuce.files.wordpress.com/2019/05/morphology.pdf

	References

