
Assignment A

CSE 517: Natural Language Processing - University of Washington

Winter 2023

Please consult the course website for current information on the due date, the late policy, and any data you
need to download for this assignment. This assignment is designed to advance your understanding of text
classification, feature design and selction, the evaluation of classifiers (e.g., the F1 score), the mathematics of
some important classification models, frequency information in text data, and some mathematical properties
of language models.

Submit: You will submit your writeup (a pdf) and your code (do not include data) via Gradescope. In-
structions can be found here. Note that you will make two submissions: one for the pdf, one for the code.

1 Text Classification – Eisenstein 4.6 (p. 89)

In the directory review polarity, you will find a dataset of positively and negatively classified reviews
that was used by Pang and Lee [2], a seminal paper about sentiment classification. Consult the readme file
for more information. Hold out a randomly selected 400 reviews as a test set.

Sentiment lexicon-based classifier. Create a classifier using a sentiment lexicon. A lexicon from Hu and
Liu [1] is provided in the directory opinion lexicon English, but you are welcome to find and use
(with attribution, of course) another. Tokenize the data, and classify each document as positive if and only if
it has more positive sentiment words than negative sentiment words. Compute and report the accuracy and
F1 score (on detecting positive reviews) on the test set, using this lexicon-based classifier.

Logistic regression classifier. Train a (binary) logistic regression classifier on your training set using fea-
tures of your own choosing, and report its accuracy and F1 score (as above) on the test set. In your write-up,
describe the features you have chose and explain the reasoning behind your choice.

Do not use pretrained word vectors or any features implemented or constructed by anyone else. Do not
use an existing implementation of logistic regression, stochastic gradient descent, or automatic differentia-
tion.

Breaking good. For each of the following, write a review document that you believe would be considered
as positive by human English speakers, and:

• your lexicon classifier predicts it as positive, whereas your logistic regression classifier predicts it as
negative.

• your lexicon classifier predicts it as negative, whereas your logistic regression classifier predicts it as
positive.

• both of your classifiers predict it as negative.

1

https://nasmith.github.io/NLP-winter23/
https://help.gradescope.com/article/ccbpppziu9-student-submit-work

For each of the above scenarios, briefly discuss why your classifier(s) would make incorrect predictions
for the document you created.

Statistical significance (extra credit). Determine whether the differences in accuracy and F1 score are
statistically significant at α = 0.05, using two-tailed hypothesis tests: binomial for the difference in accuracy
and bootstrap for the difference in macro F1 score. Report the results.

Important note: You should implement all parts of this problem from scratch (you may use numpy). Do
not use existing implementations for text tokenization, feature construction, logistic regression, stochastic
gradient descent, automatic differentiation, or statistical significance testing. In general, it’s a good idea to
use existing, trusted implementations, but in this assignment we want you to experience attempting them on
your own, even if your implementation is not the best in the world, so that you will fully grasp the nuts and
bolts of these important ideas. If you aren’t sure about whether it’s okay to import a particular library, please
ask on the discussion board!

2 Regularization – Eisenstein 2.5 (p. 44)

Suppose you are given two labeled datasets D1 and D2, with the same features and labels.

• Let θ(1) be the unregularized logistic regression (LR) coefficients from training on dataset D1.

• Let θ(2) be the unregularized LR coefficients (same model) from training on dataset D2.

• Let θ∗ be the unregularized LR coefficients from training on the combined dataset D1 ∪D2.

Under these conditions, prove that for any feature j,

θ∗j ≥ min
(
θ
(1)
j , θ

(2)
j

)
θ∗j ≤ max

(
θ
(1)
j , θ

(2)
j

)
.

3 XOR – Eisenstein 3.4 (p. 65)

Design a feedforward network to compute this function, which is closely related to XOR:

f(x1, x2) =

−1 if x1 = 1 ∧ x2 = 1

1 if x1 = 1 ∧ x2 = 0
1 if x1 = 0 ∧ x2 = 1
−1 if x1 = 0 ∧ x2 = 0

Your network should have a single output node that uses the “sign” activation function,

sign(x) =

{
1 if x > 0
−1 if x ≤ 0

Use a single hidden layer, with ReLU activation functions. Describe all weights and offsets.

2

4 Extra Credit: Initialization at Zero – Eisenstein 3.5 (p. 65)

Consider the same network as in problem 3 (with ReLU activations for the hidden layer), with an arbitrary
differentiable loss function `(y(i), ỹ), where ỹ is the activation of the output node. Suppose all weights
and offsets are initialized to zero. Show that gradient descent will not learn the desired function from this
initialization.

5 Substitution Cipher Breaking

This problem deals with substitution ciphers. A character-level substitution cipher corresponds to a map
encrypt : Σ→ Σ, where Σ is the set of characters you use to write your texts. 1 Here is an example:

characters: abcdefghijklmnopqrstuvwxyz. (space)
encrypt(·): hiwxyzpqjklmnovabcdefgrstu. (space)

Note that the period and space symbols map to themselves. To encrypt a string in Σ∗, we encrypt each
symbol in turn and concatenate. So, using this substitution cipher, we would map “the zoo seems to
be closed today.” to “eqy uvv dyynd ev iy wmvdyx evxht.”

In the following questions, let N = |Σ|.

1. How many substitution ciphers are there?

2. In a given cipher, a symbol x ∈ Σ is said to be fixed if encrypt(x) = x. (In our example above, the
period and space symbols are fixed.) How many substitution ciphers are there with no fixed symbols?
(Hint: the combinatorial concept of a derangement is useful to use here; we suggest you look it up.
Make sure to show all steps in your work.)

3. Suppose you select a substitution cipher with no fixed symbols, uniformly at random, and your friend
decides to try to break the cipher by selecting ciphers at random. What is the probability that your
friend guesses your cipher exactly within k tries (a) if they assume nothing, and (b) if they (correctly)
assume your cipher has no fixed symbols?2

4. A well-known problem with substitution ciphers is that, in a long ciphertext, the frequency of encrypt(x)
will be close to the frequency of x in plaintext. In natural languages, there is a lot of variance in differ-
ent symbols’ frequencies. (For words, “Zipf’s Law” states that the probability of the rth most frequent
word in a text corpus will have relative frequency proportional to 1

r .) Your task is to exploit this
problem to decrypt the ciphertext we provide to you (AA.encrypted.txt). The original plaintext
is in all-upper-cased English. You may assume the space symbol, numerical digits, and any other
non-alphabetic symbols are fixed. This implies that N = 26. We suggest that you automate the calcu-
lation and visualization of the symbol frequencies. Some manual search may be required since your
ciphertext (and any plaintext you use to estimate English relative frequencies) will be finite, leading to
variance in your estimates. You should submit your decrypted text.

5. One way to make a cipher more robust to the analysis discussed above is to augment the output
alphabet with more symbols: encrypt : Σ → Σ ∪ Γ. Then, during encryption, instances of more
frequent input symbols can be randomly assigned to multiple output symbols. For example, suppose
that e is the most frequent symbol in a plaintext corpus, accounting for 5% of tokens. We would then
allocate 0.05|Σ∪Γ| symbols to e, any of which might be chosen uniformly at random when encoding

1For questions 1–4, assume the mapping is one-to-one.
2This problem was inspired by the Enigma machine.

3

e. If we do this for every symbol in Σ, then the frequencies of all symbols in Σ ∪ Γ will be roughly
equal in a ciphertext. If we require that the encoding function be deterministic, how would you design
this new cipher to prevent frequency analysis attacks?

6 Valid Probabilities (n-Gram) – Based on Eisenstein 6.1 (p. 135)

Prove that n-gram language models give valid probabilities if the n-gram probabilities are valid. Specifically,
assume that ∑

v∈V
p(Xt = v | Xt−n+1 = xt−n+1, . . . , Xt−2 = xt−2, Xt−1 = xt−1) = 1 (1)

for all contexts 〈xt−n+1, . . . , xt−2, xt−1〉. For m ≥ 1, let Vm ⊂ (V \ {8})∗ denote the set of sequences of
length m that include no stop symbols. Prove that

∑
x∈Vm

pmodel(x) = 1, where m ≥ 1 and pmodel(x) is the

probability of x under the n-gram model. Your proof should proceed by induction. You should handle the
start-of-string case where the context is n− 1 start symbols, but do not include the stop symbol.

Extra Credit: If we do not include the stop symbol, n-gram models define a valid probability distribution
over sequences of a fixed length, as shown above. As a consequence, they do not define a valid probability
distribution over V∗. Show that by including the stop symbol, n-gram models define a valid distribution over
sequences of all lengths. That is, show

∑
x∈V†

pmodel(x) = 1.

7 Valid Probabilities (RNN) – Based on Eisenstein 6.2 (p. 135)

First, show that RNN language models are valid using a similar proof technique to the one in problem 6.
Next, let pr(x) indicate the probability of x ∈ Vm under RNN r. An ensemble of R RNN language

models computes the probability:

p(x) =
1

R

R∑
r=1

pr(x) (2)

Does an ensemble of RNN language models compute a valid probability? Prove your answer.

References

[1] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proc. of KDD, 2004.

[2] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proc. of ACL, 2004.

4

	Text Classification – Eisenstein 4.6 (p. 89)
	Regularization – Eisenstein 2.5 (p. 44)
	xor – Eisenstein 3.4 (p. 65)
	Extra Credit: Initialization at Zero – Eisenstein 3.5 (p. 65)
	Substitution Cipher Breaking
	Valid Probabilities (n-Gram) – Based on Eisenstein 6.1 (p. 135)
	Valid Probabilities (RNN) – Based on Eisenstein 6.2 (p. 135)

