
Assignment D

CSE 517: Natural Language Processing - University of Washington

Winter 2023

Please consult the course website for current information on the due date, the late policy, and any data
you need to download for this assignment. This assignment is designed to give you more practical hands-on
experience with sequence labeling and to advance your understanding of structured problems in NLP that
deal with segmentation, trees, and logical forms.

Submit: You will submit your writeup (a pdf) and your code (do not include data) via Gradescope. In-
structions can be found here. Note that you will make two submissions: one for the pdf, one for the code.
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1 Whitespace Tokenizer for English – based on Eisenstein 8.7 (p. 180–1)

1. Using the NLTK library, download the complete text to the novel Alice in Wonderland by Lewis
Carroll. Hold out the final 1000 words as a test set.

2. Let x = 〈x1, x2, . . . , xM 〉 be the sequence of non-whitespace characters in the training set. Each char-
acter xm will receive a binary label ym, taking the value 1 if xm is the final character of a whitespace-
separated token, and 0 otherwise. You can now represent your training data as two M -length strings,
x (with no whitespace) and y ∈ {0, 1}M . Do the same with the test data.

3. Train a logistic regression classifier to predict ym, using the eleven characters 〈xm−5, . . . , xm, . . . , xm+5〉
as features. (You have some flexibility in precisely how you create the features.) After training the
classifier, run it on the test set, using the predicted segmentation points to retokenize the text.

4. Compute the per-character segmentation accuracy on the test set. You should be able to get at least
88% accuracy.

5. Print out a sample of segmented text from the test set, e.g.

Thereareno mice in the air , I ’ m afraid , but y oumight cat
chabat , and that ’ svery like a mouse , youknow . But
docatseat bats , I wonder ?’

6. Per-character segmentation accuracy is easy to compute, but it is not a very intuitive way to talk about
the system’s errors. A better way is to partition the tokens that you see in either the ground truth
segmentation or the system’s segmentation as follows:

ground truth segmentation not in ground truth segmentation
system’s segmentation true positives false positives

not in system’s segmentation false negatives true negatives

This is one kind of confusion matrix. Calculate the numbers of (a) true positives, (b) false positives,
and (c) false negatives. Use them to calculate the token-level precision, recall, and F1 score of your
system. (Hint: to match predicted and ground truth tokens, you can represent a token as a pair of
integers: a start position and a length. If you represent the predicted output as a set of such integer-
pairs, and do the same with the ground truth data, then the number of true positives is the size of these
two sets’ intersections.)

2 Extensions to the Tokenizer – based on Eisenstein 8.8 (p. 181)

1. Train a conditional random field sequence labeler, by incorporating the tag bigrams (ym−1, ym) as
additional features. You may also incorporate features that consider the tag bigrams as well as infor-
mation from the input sequence. You may use a structured prediction library such as CRFSuite, or you
may want to implement Viterbi yourself. Compare the accuracy to that of your classification-based
approach.
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2. Calculate the token-level precision, recall, and F1 score of your CRF system.

3 Ungrammarian – based on Eisenstein 9.8 (p. 213)

Construct three examples—a noun phrase, a verb phrase, and a sentence—which can be derived from the
Penn Treebank grammar fragment in §9.2.3 (pp. 204–8), yet are not grammatical in your dialect of English.
Avoid reusing examples from the text. Propose corrections to the grammar to avoid generating these cases.

4 Extra Credit: Artistic Differences – based on Jurafsky & Martin 8.9

Names of works of art (books, movies, video games, etc.) are quite different from the kinds of named entities
we’ve discussed in this class. Collect a list of names of works of art. You may use a Web-based source (e.g.,
gutenberg.org, amazon.com, imdb.com, etc.), but you are welcome to create the list from your own cultural
experience. Do you think the techniques learned in class might fail to learn to recognize the kinds of entities
in your list? Explain how and why.

5 Byte-Pair Encoding

The rare/unknown word issue is ubiquitous in neural text generation. Typically, a relatively small vocabulary
is constructed from the training data, and the words not appearing in the vocabulary are replaced with a
special <unk> symbol.

Byte-pair encoding (BPE) is currently a popular technique to deal with this issue. The idea is to encode
text using a set of automatically constructed types, instead of conventional word types. A type can be a
character or a subword unit; and the types are built through a iterative process, which we now walk you
through.

Suppose we have the following tiny training data:
it unit unites
The first step is to append, to each word, a special <s> symbol marking the end of a word. Our initial

types are the characters and the special end-of-word symbol: {i, t, u, n, e, s, <s>}. Using the initial type
set, the encoding of the training data is

i t <s> u n i t <s> u n i t e s <s>
In each training iteration, the most frequent type bigram is merged into a new symbol and then added to

the type vocabulary. Ties can be broken at random.

Iteration 1

Bigram to merge (with frequency 3): i t

Updated data: it <s> u n it <s> u n it e s <s>

Iteration 2

Bigram to merge (with frequency 2): it <s>

Updated data: it<s> u n it<s> u n it e s <s>

Iteration 3

Bigram to merge (with frequency 2): u n

Updated data: it<s> un it<s> un it e s <s>
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In this example, we end up with the type vocabulary {i, t, u, n, e, s, <s>, it, it<s>, un}. The stopping
criterion can be defined by setting a target vocabulary size.

Applying BPE to new words is done by first splitting the word into characters, and then iteratively
applying the merge rules in the same order as in training. Suppose we want to encode text unite itunes,
it is first split into u n i t e <s> i t u n e s <s>. Then

Iteration 1
Bigram to merge: i t

Encoded word: u n it e <s> it u n e s <s>

Iteration 2
Bigram to merge: u n

Encoded word: un it e <s> it un e s <s>

The above procedure is repeated until no merge rule can be applied. In this example we get the encoding un
it e <s> it un e s <s>.

1. Is it necessary that we append a special symbol <s> at the end of each token? Why or why not?

2. Given the training data, is it true that only one BPE encoding can be learned? Why or why not?

3. Implement the BPE algorithm and run it on the text data in AD-data.txt. What we want you to
produce is a scatterplot showing points (x, y), each corresponding to an iteration of the algorithm,
with x the current size of the type vocabulary, and y the length of the training corpus (in tokens) under
that vocabulary’s types. Run the algorithm until the frequency of the most frequent type bigram is one.
How many types do you end up with? What is the length of the training data under your final type
vocabulary?

4. In the above running example, neither unite or itunes appears in our training data. We neverthe-
less managed to encode them meaningfully using BPE types, which would otherwise be <unk> if we
were using conventional word types. Think of a rare English word that does not appear in the training
data used in Question 3. Encode it using the BPE encoding you just trained. Do you get an <unk>?
More generally, justify why it is less likely that we encounter an <unk> using the BPE encoding.

5. Another way of dealing with the rare word issue is to encode the text using characters. Comparing it
to BPE, discuss the advantages and potential issues of character-level encoding.

Useful resources. BPE has an open-source implementation: https://github.com/rsennrich/
subword-nmt. You can use it to check your implementation or in your own research. Please refrain from
copy-pasting code for this assignment.

6 First-Order Logic – Eisenstein 12.2 (p. 286)

Convert the following examples into first-order logic, using the relations CAN-SLEEP, MAKES-NOISE, and
BROTHER.

1. If Abigail makes noise, no one can sleep.

2. If Abigail makes noise, someone cannot slep.

3. None of Abigail’s brothers can sleep.

4. If one of Abigail’s brothers makes noise, Abigail cannot sleep.
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7 Extra Credit: Tree Labeling

Your friend, a linguist, has developed a new theory of syntactic categories. She wants to build a new treebank
based on this theory, but she doesn’t want to start from scratch. Instead, she proposes to use the sentences
and unlabeled tree structures—sometimes called bracketings—from the Penn Treebank, and relabel each
constituent based on her new theory.

After labeling a few hundred sentences’ worth of trees, exhaustion sets in, and she asks whether you
can build a classifier to help. You ask her about the criteria she uses to label each constituent, and you find
that most of the decisions seem to depend on neighboring constituents, specifically, the parent, siblings, and
children of a node in the tree. In essence, you suspect that a PCFG would be a good model of the labeling
process.

Describe a dynamic programming algorithm that takes as input a PCFG, a sentence, x, and an unlabeled
phrase-structure tree (denoted by a collection of spans 〈〈i1, j1〉, 〈i2, j2〉, . . . , 〉), and produces the PCFG’s
most probable labeled tree consistent with the input. To simplify the problem a bit, assume that the PCFG is
in Chomsky normal form and that every word’s parent in the tree has a single child (i.e., that word), and that
every other node of the tree has two children. The runtime of your algorithm should be linear in the size of
the tree, and hence in the size of the sentence.

8 Transition-Based Parsing

An alternative to the optimization view of parsing (exemplified by the CKY algorithm we covered in lecture)
is to think of the problem as a sequence of incremental decisions. This is often modeled as a sequence of
transitions taken in an abstract state machine.1 The most common of these transitions build the tree “bottom
up.” Here, we consider a way to build the tree “top down.”

The algorithm maintains two data structures, a buffer B and a stack S. The buffer is initialized to contain
the words in x, with the left-most word at the top. The stack is initialized to be empty. At each iteration one
of the following actions is taken:

• NT(N) (for some N ∈ N): introduces an “open” nonterminal and places it on the stack. This is
represented by “(N” to show that the child nodes of this nonterminal token have not yet been fully
constructed.

• SHIFT removes the word at the front of the buffer and pushes it onto the stack.

• REDUCE repeatedly pops completed subtrees from the stack until an open nonterminal is enountered;
this open nonterminal is popped and used as the label of a new constituent whose children are the
popped subtrees. The new completed constituent is placed on the stack.

The goal of the algorithm is to reach a state where the buffer is empty and the stack contains a single tree,
which will be a parse of the sentence. Figure 1 shows an example of the sequence of actions that might be
taken in (fortunately, correctly!) parsing “The hungry cat meows .”

One way to use this abstract state machine is within a search framework. The states of the search space
are exactly those of the abstract state machine—here, the buffer and stack. It should be clear that there is
an infinite set of states that can be reached by taking different sequences of the actions above; only a very
small set of them will lead to a desired final state (where the buffer is empty and the stack contains a single
tree). At each iteration of the search, your method chooses a state it has already reached, considers different
actions it might take at that state, each producing a new state, which is now remembered as one that has been

1A finite-state automaton is one kind of abstract state machine that “remembers” only one of a finite set of states, but for parsing
we keep track of more information.
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Input: The hungry cat meows .

Stack Buffer Action
0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT

3 (S | (NP |The hungry | cat |meows | . SHIFT

4 (S | (NP |The | hungry cat |meows | . SHIFT

5 (S | (NP |The | hungry | cat meows | . REDUCE

6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT

8 (S | (NP The hungry cat) | (VP meows . REDUCE

9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE

11 (S (NP The hungry cat) (VP meows) .)

Figure 1: Top-down transition-based parsing example. | is used to delimit elements of the stack and buffer.
This example ignores part of speech symbols.

reached. Different search strategies can be used to decide which state to explore next, and whether to discard
any states you’ve reached.

An alternative to search is to proceed greedily, following one sequence of actions from the initial state
until the termination criterion is reached. At each step, a statistical classifier is used to pick the best action.
The classifier has access to the current state (the buffer and the stack) to make this decision. Linear-time
parsing is achievable this way, and performance can be quite good, but it requires building a really good
classifier.

1. Show the sequences of actions needed to parse the ambiguous sentence “He saw her duck.” In one
version, Alice is showing Bob her pet (a duck). In the other, Carla throws a rotten tomato at Alice,
who ducks, and Bob saw the whole incident. For each version, construct a visualization like Figure 1
and show the stack and buffer at each iteration.

2. What features might make sense in this classifier?

3. Somewhat surprisingly, the approach above was described without mention of the grammar! Suppose
you have a PCFG, and you want to apply top-down transition-based parsing to find a tree with high
probability for the input sentence. How might you adapt the search version of this parser to try to find
a high-probability tree?

4. In greedy top-down transition-based parsing, a bad decision early on can really mess things up. One
danger comes about when the grammar has left-recursive rules like A → A B or “cycles” of them,
like A → B C and B → A D. Describe a way to constrain such a parser so that it won’t go into an
infinite loop.
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