
Beyond transformers:
Mixture of Expert Models

CSE517: Grad NLP
Tim Dettmers
2023-02-16

What makes a good researcher?

● Top 1% of researcher produce 20% of all citations
● Accumulated advantage the most important factor that creates good

researchers
● How Nobel Laureates are made (according to Harriet Zuckerman):

○ Nobel Laureates start out not better than any other researcher
○ They gain a small advantage through chance or luck
○ That advantage gives them more resources and opportunities (“better” university, more grants,

more students, awards, more lab resources, more GPUs)
○ Once they receive the advantage, it's easier to gain more advantage
○ Repeat … repeat … repeat …
○ Nobel Laureate

● By this point, Nobel Laureates are better researcher, mostly due to research
style learned from their advisor and research group

What makes a good scientist? Research style!

This lecture is about following a particular research style

You will learn in this lecture about mixture of experts, but that is not the main
lesson.

The main lesson is to follow the research style of “computational efficiency is
everything” to its conclusion.

Our tenet for this lecture

 Intelligence = min(Compute/waste, data movement/waste)

Important:
● Balance computation and data movement (communication)
● Maximize computation and data movement to create the most intelligence
● Reduce waste to a minimum: Every computation and data movement needs to be needed

Not important:
● Anything that has not to do with these variables

This is naive in many ways. It is a hypothetical view

● Each research style or view has different believes
● Believes often do not rely on good evidence or have some weak points
● Opposite research styles might be successful
● Some research styles are only successful for a while to focus on a particular

problem

Why the computational perspective could make sense

1. Intelligence roughly proportional to number of cortical neurons (compute):
a. Humans 10x more neurons than Chimpanzee/Dolphins/Crows/Elephants
b. Chimpanzees 10x more neurons than dogs
c. Dogs 2x more neurons than cats
d. Cats 50x more neurons than bees
e. GPT-3 roughly as much compute as a bee

2. Primate brains are special. They are optimized for data movement (sparsity)
3. Human brains not special. Just a scaled up monkey brain.
4. Communication (white matter) and computation (grey matter) mathematically

perfectly balanced across all primates (no waste)
5. Number of neurons determined by maximum energy intake across all

mammals (no waste)

Primates scale differently … and so do transformers

(left) Herculano-Houzel, 2016. (right) Kaplan et al. 2020.

What scales better than transformers? Mixture of Experts

Unified Scaling Laws for Routed Language Models. Clark et al., 2022.

Regular
transformer

Background

In this section you will learn what limits us: compute/data
movement, are we too wasteful?

What is the main problem, computation or data movement?

Why are GPUs fast?

How to do a fast matrix multiplication that balances compute and data movement?

How do we scale efficiently?

What are language models and how do they work?

What are transformers and how do they work?

Communication (data movement) much more limiting than computation

How GPUs overcome data limitations, and why they are fast

Task: pick up data (packages) from location A (main memory).

Packages go from A (GPU memory) to B (GPU core). The core has a loading dock
(cache) that is for packages that just arrived. Its small and cannot hold many
packages at once.

CPUs are like Ferraris, super fast, but can only hold a few packages

GPUs are like trucks, super slow, but can hold lots of packages

What is more efficient for package delivery, a fleet of Ferraris or a fleet of trucks?

Caching in matrix multiplication I

Most efficient to divide a matrix multiplication into smaller
sub-matrix multiplications.

How to do matmul efficiently with three trucks:

1. Truck A, B, and C drive to core.
2. Truck A and B unload packages (A1, A2) and (B1, B4)

unto the loading dock and get more B packages (B2,
B5, B3, B6).

3. Truck C waits in the loading dock.
4. Workers from the core grab packages A and B and

matrix multiply them. Then store results into Truck C.
Once Truck C is full, truck C drives to the output

5. The other trucks arrive with packages B2, B5, B3, B6
6. Repeat …

Caching in matrix multiplication II

In matrix multiplication A*B=C we:

Multiply each row of A with all columns from B.

As such, memory of A can be reused as often as there are columns in B.

Multiply each column of B with all rows of A

As such, memory of B can be reused as often as there are rows in B

Chinchilla scaling laws and how to estimate compute time

Chinchilla scaling laws (Hoffmann et al., 2022) say we should use 20 training tokens per
parameter.

So if our dataset has 380B tokens (The Pile) we need a ~20B model to be efficient.
Training transformers incurs 6 FLOPs per parameter per token. So we have:

380e9 * 20e9 *6 FLOPs = 4.56e22 FLOPs

A A40 GPU on Hyak has 150 TFLOPS or 150e12 FLOPS performance. At 25% efficiency
we have 38e12 FLOPS.

4.56e22 / 3.8e13 / (60*60*24*365) = 38.05 GPU years

So to optimally train a model on 380B tokens, we need 38 GPU years.

Calculating the waste of GPT-3 training: I

GPT-3 data set had 300B tokens and model size was 175B:

300e9*175e9*6 = 3.15e23 FLOPs

Chinchilla optimal for 300B tokens is 15B parameters

300e9*15e9*6 = 2.27e22 FLOPs

Calculating the waste of GPT-3 training: II

We use Chinchilla scaling law and increase data and compute equally until we
reach the loss for GPT-3.

Solution: 32B parameters on 638B tokens to reach GPT-3 performance.

638e9*32e9*6 = 1.25e23 FLOPs

GPT-3 waste: 3.15e23 / 1.25e23 = 2.52

GPT-3 could have been trained to the same performance with 2.52x less compute.

Putting things together

According to the Chinchilla paper (Hoffmann et al., 2022) one needs 20 tokens per
parameter to train in the most cost efficient way.

The internet has about 5T tokens and about 2T of “high quality” tokens.

Max effective model size is 250 - 100B parameters.

For 250B - 100B parameters, Mixture of Experts are about 3-5x more efficient.

Chinchilla scaling is 2.5x more efficient compared to GPT-3 training.

-> Chinchilla mixture of expert training is 8x to 13x more efficient than GPT-3
training

Language modeling

Objective: Take a sequence of words and predict the next word.

Why is this a good objective:

● Learn grammar and style first
● Then model the world. You need to model people in order to understand that

they could say/write next -> emotional state, political affiliation, social status,
social situation, current time (past/future/present), fictional or non-fictional

Transformers

Example: “Her dog felt guilty. Daisy looked down avoiding eye contact. She was
fully aware of the ___”

How to think about transformers. A simplification:

1. Create word embeddings. Each word has many “features”. Each feature is an
association of what is going on for this word: grammar, time, emotional state,
social situation, environment, animate vs inanimate.

2. Combine association for a word to create new condensed association for
that word

3. Weighted sum across tokens for each associations to create new
context-enriched associations

Mixture of Experts

Transformers vs mixture of experts

Some associations are mutually independent. Associations of heart medicine not
very useful to answer questions about astrophysics. Computing heart medicine
associations on astrophysics data is a waste of compute.

Can we arrange associations into distinct packages that activate when needed
rather than being activated during any context?

The Transformer is wasting compute

Medicin

Law

Transformer
Feedforward layer

Inputs Outputs

Math

Code

Expert perspective

Medicin

Law

Expert Feedforward
layer

Inputs Outputs

Math

Code
Router

GShard

Three parts:

1. Expert architecture
2. Extra loss function to avoid degeneration
3. Load-balancing to avoid waiting for slowest expert

GShard: Architecture

For each token

1. Select expert via top-k softmax
2. Pass through expert, then multiply by softmax value

GShard: Auxiliary loss function

Problem: at the start of training the expert that is best might be selected again and again which leads to degeneration.
As such, we penalize the distribution of experts.

L = loss + auxiliary loss

L_aux = num_experts * fraction of tokens per expert * mean(gate probability)

Expert has mean probability close to 0 -> 0 loss

Expert has mean probability close to 1/2E -> E*1/2E*1/2E = 1/4E loss

Expert has mean probability close to 1/E -> E*1/E*1/E = 1/E loss

Expert has mean probability close to 2/E -> E*2/E*2/E = 4/E loss

Expert has mean probability close to 1 -> E*E*1 = E^2 loss

Gshard: Load balancing

Problem: If we compute multiple experts in parallel with a different amount of
tokens, some experts may have more tokens than others and take longer -> All
experts need to wait for the slowest expert.

Solution: We have a capacity limit of ~total_tokens/num_experts. Any tokens
going beyond this limit will be set to zero and will not be routed to any expert.

Results

Issues: Complicated and slow communication

● Extra loss
● Load-balancing via

overflow

Can we do better?

BASE layers approach

1. Randomly assign tokens, then
rerank locally

2. Learn a centroid for each expert,
compute similarity score between
tokens and centroids

3. Use similarity score to rerank
tokens to experts (linear
assignment problem)

BASE layers: architecture

Regular transformer layers + BASE layers instead of feedforward network for
every other layer.

h = input token, f_a = expert, w_a = expert_centroid, sigma = logistic sigmoid

t = index into sequence (token)

Training: Assign tokens equally to each experts

Evaluation: Assign tokens to highest scoring expert

BASE Layers: Results

Remaining issue: Slow communication

Branch-Train-Merge: Architecture

It’s just a transformer! So no changes to the architecture or no new loss.

Branch-Train-Merge: Training

How to train:

● Branch: Take a reference LLM or train
new one for a couple thousand steps

● Branch: Copy its weights for each
domain

● Train: Feed data of each domain
through its designated “expert”

● Train: Train all experts independently
(no communication needed)

● Merge: Merge experts into a single
model. This is done through
evaluation on a validation set.

Branch-Train-Merge: Results. Better than transformers

Branch-Train-Merge: Results. Faster than transformers.

Conclusion

If we want to maximize min(compute/waste, data movement/waste) then:

1. GPUs balance compute and data movement
2. Scaling laws help us reduce waste in our training setup
3. Mixture of experts help us to reduce waste by reducing unneeded

computation
a. BASE layers balances compute and data movement compared to GShard
b. Branch-train-merge eliminates data movement across experts entirely

Thank you!
Questions / Comments?

Why does this tenet make sense: Evidence from neuroscience

Study brains of all mammals.

Finding (1): brain structure correlated
with evolutionary tree structure

Why does this tenet make sense: Humans have the most compute

Finding (2): Intelligence ~ number of neurons

Finding (3): Primate neurons scale differently

● A cat has 50x more neurons than a bee
● A dog has 2x more neurons than a cat
● A dolphin/elephant/chimpanzee/crow has 5x more

neurons than a dog
● A humans has 10x more neurons than a

chimpanzees

Why does this tenet make sense: Humans produce the most energy

Finding (4): Intelligence is energy limited: Chose 1: (a) large body, (b) large brain

Finding (5): Humans are more energy efficient and can afford more intelligence.

