Beyond transformers:
Mixture of Expert Models

CSEb517: Grad NLP
Tim Dettmers
2023-02-16

What makes a good researcher?

e Top 1% of researcher produce 20% of all citations
e Accumulated advantage the most important factor that creates good
researchers

e How Nobel Laureates are made (according to Harriet Zuckerman):
o Nobel Laureates start out not better than any other researcher
o They gain a small advantage through chance or luck
o That advantage gives them more resources and opportunities (“better” university, more grants,
more students, awards, more lab resources, more GPUs)
o Once they receive the advantage, it's easier to gain more advantage
o Repeat ... repeat ... repeat ...
o Nobel Laureate

e By this point, Nobel Laureates are better researcher, mostly due to research
style learned from their advisor and research group

What makes a good scientist? Research style!

Good science is good math. A paper should be mathematically solid so that it will
stand for years, holding valuable insights and generalizations that go beyond the
current theoretical application.

Good science is robust science. A paper should have careful claims with robust
evidence. This will help make the field progress more quickly by providing
reliable information to build on.

Good science is a good research vision. A paper should be about what is possible
in the future and where a line of research could lead to. Evidence augments
vision, but a paper without vision is blind, incremental, and will be forgotten.
Good science is good insight. Some insights can be extrapolated and be applied
to many other scientific problems, many of which have not been formulated yet.
Finding and expressing these insights is vital for scientific progress.

Itis all about productivity. Research is inherently noisy and messy, and it's tough
to predict the outcome of an idea or set of experiments in the development
stage. Navigating this uncertainty is best done through fast iterations and
balancing multiple projects to maximize the chances of a big success.

Good science is collaborative. Different people can bring unique perspectives to
a project and increase the chance of serendipitous insights. Collaborations bring
the best out of people and can result in a sum that is larger than its parts.

Good science is solitary. To gain the deepest insights into a problem, one has to
understand a problem in its fullness without outside help. While collaborators

This lecture is about following a particular research style

You will learn in this lecture about mixture of experts, but that is not the main
lesson.

The main lesson is to follow the research style of “computational efficiency is
everything” to its conclusion.

Our tenet for this lecture

Intelligence = min(Compute/waste, data movement/waste)

Important:
e Balance computation and data movement (communication)
e Maximize computation and data movement to create the most intelligence
e Reduce waste to a minimum: Every computation and data movement needs to be needed

Not important:
e Anything that has not to do with these variables

This is naive in many ways. It is a hypothetical view

Each research style or view has different believes

Believes often do not rely on good evidence or have some weak points
Opposite research styles might be successful

Some research styles are only successful for a while to focus on a particular

problem

Why the computational perspective could make sense

1.

w N

Intelligence roughly proportional to number of cortical neurons (compute):
a. Humans 10x more neurons than Chimpanzee/Dolphins/Crows/Elephants

b. Chimpanzees 10x more neurons than dogs

c. Dogs 2x more neurons than cats

d. Cats 50x more neurons than bees

e. GPT-3 roughly as much compute as a bee

Primate brains are special. They are optimized for data movement (sparsity)
Human brains not special. Just a scaled up monkey brain.

Communication (white matter) and computation (grey matter) mathematically
perfectly balanced across all primates (no waste)

Number of neurons determined by maximum energy intake across all
mammals (no waste)

Primates scale differently ... and so do transformers

8,000 |
g 1
£ 1,000
o Test Loss 5.4
x 438
£ 100+
3 ; 42
g _
2 10 3.6
— -
3
- 1
2 14 3.0
A :
s
0.1~ 2.4

T T T
0 5 10 15 20

Neurons in cerebral cortex (billions)

(left) Herculano-Houzel, 2016. (right) Kaplan et al. 2020.

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

LSTMs

1 Layer
2 Layers

Transformers 4 Layers

105 106 107 108 100
Parameters (non-embedding)

What scales better than transformers? Mixture of Experts

= = H S-BASE

- —_— -

© O i

c 8 100B RL-R

2 £ 108 - —— Hash

XE 1B{ =% _ —— Dense

S = outing improvement

= 100M A Regular

100M 1B 10B 100B 1T transformer

Base model size

Unified Scaling Laws for Routed Language Models. Clark et al., 2022.

Background

In this section you will learn what limits us: compute/data
movement, are we too wasteful?

What is the main problem, computation or data movement?

Why are GPUs fast?

How to do a fast matrix multiplication that balances compute and data movement?
How do we scale efficiently?

What are language models and how do they work?

What are transformers and how do they work?

Communication (data movement) much more limiting than computation

2021 AM Turlng Award Recipient Jack Dongarra Turmg Lecture 'A Not So Slmple Matter of Software"

When We Look at Performance in
Numerical Computations ...

Plot for 64-bit floating point data movement & operations

= Data movement haS a big imp act (Bandwidth from CPMU :r Gll:alli memory to registers)
achine balance

« Performance comes from balancing (floating point operations per read)
floating point execution (Flops/sec) :
with memory->CPU transfer rate
(Words/sec)

« “Best” balance would be 1 g

flop per word-transfered E
» Today’s systems are close to 100
ﬂops/sec per word-transferred <2 o

.......

<) 48:25/1:09:27

How GPUs overcome data limitations, and why they are fast

Task: pick up data (packages) from location A (main memory).

Packages go from A (GPU memory) to B (GPU core). The core has a loading dock
(cache) that is for packages that just arrived. Its small and cannot hold many
packages at once.

CPUs are like Ferraris, super fast, but can only hold a few packages
GPUs are like trucks, super slow, but can hold lots of packages

What is more efficient for package delivery, a fleet of Ferraris or a fleet of trucks?

Caching in matrix multiplication |

Most efficient to divide a matrix multiplication into smaller
sub-matrix multiplications.

How to do matmul efficiently with three trucks:

1. Truck A, B, and C drive to core.

2. Truck A and B unload packages (A1, A2) and (B1, B4)
unto the loading dock and get more B packages (B2,
B5, B3, B6).

Truck C waits in the loading dock.

Workers from the core grab packages A and B and
matrix multiply them. Then store results into Truck C.
Once Truck C is full, truck C drives to the output

The other trucks arrive with packages B2, BS, B3, B6
Repeat ...

> w

o o

Al

A3

A4

B1

B2

B3

A5

A6

B5

B6

A7

A8

00

>
|§+ :%l

> >|> >
*l$+ $|E+3

3

>
g,

Caching in matrix multiplication Il

In matrix multiplication A*B=C we:

Multiply each row of A with all columns from B.

As such, memory of A can be reused as often as there are columns in B.
Multiply each column of B with all rows of A

As such, memory of B can be reused as often as there are rows in B

Chinchilla scaling laws and how to estimate compute time

Chinchilla scaling laws (Hoffmann et al., 2022) say we should use 20 training tokens per
parameter.

So if our dataset has 380B tokens (The Pile) we need a ~20B model to be efficient.
Training transformers incurs 6 FLOPs per parameter per token. So we have:

380e9 * 20e9 *6 FLOPs = 4.56e22 FLOPs

A A40 GPU on Hyak has 150 TFLOPS or 150e12 FLOPS performance. At 25% efficiency
we have 38e12 FLOPS.

4.56e22 / 3.8e13 / (60*60*24*365) = 38.05 GPU years

So to optimally train a model on 380B tokens, we need 38 GPU years.

Calculating the waste of GPT-3 training: |

GPT-3 data set had 300B tokens and model size was 175B:
300e9*175e9*6 = 3.15e23 FLOPs

Chinchilla optimal for 300B tokens is 15B parameters
300e9*15e9*6 = 2.27e22 FLOPs

A B
L(N,D)=E+ +

NO:34 T p0.28° (10)

with E = 1.69, A = 406.4, B = 410.7. We note that the parameter/data coefficients are both lower

Calculating the waste of GPT-3 training: Il

We use Chinchilla scaling law and increase data and compute equally until we
reach the loss for GPT-3.

Solution: 32B parameters on 638B tokens to reach GPT-3 performance.

638€9*32e9%6 = 1.25e23 FLOPs

GPT-3 waste: 3.15e23/ 1.25e23 = 2.52

GPT-3 could have been trained to the same performance with 2.52x less compute.

Putting things together

According to the Chinchilla paper (Hoffmann et al., 2022) one needs 20 tokens per
parameter to train in the most cost efficient way.

The internet has about 5T tokens and about 2T of “high quality” tokens.

Max effective model size is 250 - 100B parameters.

For 250B - 100B parameters, Mixture of Experts are about 3-5x more efficient.
Chinchilla scaling is 2.5x more efficient compared to GPT-3 training.

-> Chinchilla mixture of expert training is 8x to 13x more efficient than GPT-3
training

Language modeling

Objective: Take a sequence of words and predict the next word.

Why is this a good objective:

e Learn grammar and style first
e Then model the world. You need to model people in order to understand that

they could say/write next -> emotional state, political affiliation, social status,
social situation, current time (past/future/present), fictional or non-fictional

Transformers

Example: “Her dog felt guilty. Daisy looked down avoiding eye contact. She was
fully aware ofthe ”

How to think about transformers. A simplification:

1. Create word embeddings. Each word has many “features”. Each feature is an
association of what is going on for this word: grammar, time, emotional state,
social situation, environment, animate vs inanimate.

2. Combine association for a word to create new condensed association for
that word

3. Weighted sum across tokens for each associations to create new
context-enriched associations

Mixture of Experts

Transformers vs mixture of experts

Some associations are mutually independent. Associations of heart medicine not
very useful to answer questions about astrophysics. Computing heart medicine
associations on astrophysics data is a waste of compute.

Can we arrange associations into distinct packages that activate when needed
rather than being activated during any context?

The Transformer is wasting compute

Transformer
Feedforward layer

Medicin

Inputs Law Outputs

Math

Code

Expert perspective

Expert Feedforward
layer

Medicin \
Inputs Q / Law Outputs
Math

/ Code

Router

OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer', Azalia Mirhoseini*!!, Krzysztof Maziarz*?, Andy Davis', Quoc Le', Geoffrey
Hinton' and Jeff Dean'

GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding

Dmitry Lepikhin HyoukJoong Lee Yuanzhong Xu
lepikhin@google.com hyouklee@google.com yuanzx@google.com
Dehao Chen Orhan Firat Yanping Huang
dehao@google.com orhanf@google.com huangyp@google.com

Maxim Krikun Noam Shazeer Zhifeng Chen

krikun@google.com noam@google.com zhifengc@google.com

GShard

Three parts:

1. Expert architecture
2. Extra loss function to avoid degeneration
3. Load-balancing to avoid waiting for slowest expert

GShard: Architecture

For each token

1. Select expert via top-k softmax G(x) = Softmax(KeepTopK(H(x),k))
2. Pass through expert, then multiply by softmax value

y=> G(z)Ei(z)
=1

G..r = GATE(z,) “d:)—‘{:::}—

FFN,(z,) = wo, - ReLU(wi, - x,) o e

Yo = D Go.c - FFN(z) *ﬁj—‘}bﬂ
e=1

£

. (MoE layer

Gix),| [Gha,,

GShard: Auxiliary loss function

Problem: at the start of training the expert that is best might be selected again and again which leads to degeneration.
As such, we penalize the distribution of experts.

L = loss + auxiliary loss

L_aux = num_experts * fraction of tokens per expert * mean(gate probability)

Expert has mean probability close to 0 -> 0 loss

Expert has mean probability close to 1/2E -> E*1/2E*1/2E = 1/4E loss
Expert has mean probability close to 1/E -> E*1/E*1/E = 1/E loss
Expert has mean probability close to 2/E -> E*2/E*2/E = 4/E loss

Expert has mean probability close to 1 -> E*E*1 = E*2 loss

Gshard: Load balancing

Problem: If we compute multiple experts in parallel with a different amount of
tokens, some experts may have more tokens than others and take longer -> All
experts need to wait for the slowest expert.

Solution: We have a capacity limit of ~total tokens/num_experts. Any tokens
going beyond this limit will be set to zero and will not be routed to any expert.

Results

15

10

ABLEU

0

-
AT Ty

Lvarenst?,
.

i A i

1B+ examples « high-resouce languages ... low-resource languages — 10k examples
per language per language

MoE(2048,36L) - 600B
——— MoE(2048,12L) - 2008
MoE(512E,36L) - 1508
MoE(512E,12L) - 508
MoE(128E,36L) - 378
MoE(128E,12L) - 12.58
wesssees T(O6L) - 2.38

Issues: Complicated and slow communication

e Extraloss

& AlIToAll8MB @ AllReduce 8MB € AllToAll 32MB @ AllReduce 32MB

e Load-balancing via = = O(sart(N)
overflow 10000
5000
Can we do better? 8 1000
2 s
100

16 32 64 128 256 512 1024 2048

Number of partitions (N)

BASE Layers: Simplifying Training of Large, Sparse Models

Mike Lewis ' Shruti Bhosale' Tim Dettmers'> Naman Goyal' Luke Zettlemoyer '’

UNIFIED SCALING LAWS FOR ROUTED LANGUAGE MODELS

Aidan Clark*, Diego de las Casas*, Aurelia Guy*, Arthur Mensch*

Michela Paganini, Jordan Hoffmann, Bogdan Damoc, Blake Hechtman®, Trevor Cai, Sebastian Borgeaud,

George van den Driessche, Eliza Rutherford, Tom Hennigan, Matthew Johnson', Katie Millican,

Albin Cassirer, Chris Jones, Elena Buchatskaya, David Budden, Laurent Sifre, Simon Osindero,
Oriol Vinyals, Jack Rae, Erich Elsen, Koray Kavukcuoglu, Karen Simonyan

DeepMind Google Research®

BASE layers approach

1. Randomly assign tokens, then
rerank locally

2. Learn a centroid for each expert,
compute similarity score between
tokens and centroids

3. Use similarity score to rerank
tokens to experts (linear
assignment problem)

Worker 2

Re-route to original worker Cats

Mix in expert output:
h;+0(wa, . h;)fa(h;)

Expert Computation
fih,)

Balanced assignment of
token i/ to expert a;

!

(Eif_)

Figure 1. Overview of a BASE layer. Each worker contains a
separate expert module. During training, we compute a balanced
assignment of tokens such that each worker sends an equal number
of tokens to each expert. By softly mixing in the expert module,
experts can learn to specialize for particular types of tokens.

Hidden states h,

e

BASE layers: architecture

Regular transformer layers + BASE layers instead of feedforward network for
every other layer.

h = input token, f_a = expert, w_a = expert_centroid, sigma = logistic sigmoid

t = index into sequence (token)

o(ht - wa,) fa,(ht) + Ry,

Training: Assign tokens equally to each experts

Evaluation: Assign tokens to highest scoring expert

BASE Layers: Results

Validation Perplexity

12

[
—
I

[
)

Nej

—— BASE X3
—— Sparsely Gated MoE
— Switch

0.5

1 1.5 2 2.
Training Time (days)

Model | Tokens per Second
Data Parallel 600k
Model Parallel x2 224k
Sparsely Gated MoE 292k
Switch 469k
BASE 545k
BASE x2 475k

Table 2. Number of tokens processed per second during training
by different models. BASE computes updates faster than other ap-
proaches that divide models over multiple workers, due to reduced
communication overheads. This allows a 43B parameter model to
be trained at 90% of the speed of a 1.5B data parallel baseline.

Remaining issue: Slow communication

& AlToAll8MB @ AlReduce 8MB @ AllToAll 32MB @ AllReduce 32MB
= = O(sqrt(N))

10000

5000
[
o
:

) 1000
7]
2
=

= 500

100

16 32 64 128 256 512 1024 2048

Number of partitions (N)

Branch-Train-Merge: Embarrassingly Parallel
Training of Expert Language Models

Margaret Li*1° Suchin Gururangan*'® Tim Dettmers'
Mike Lewis® Tim Althoff' Noah A. Smith'#* Luke Zettlemoyer'®

"Paul G. Allen School of Computer Science & Engineering, University of Washington
4 Allen Institute for Al
“Meta Al

Each GPU has s own copy of the same LM Each GPU has & distinef LM

(a) Fully

St I f P TITT @ ? § f f mlele "’.lfr';‘.:l‘:'{f:a:‘i’.‘.%"
J

Training . = . - . . RS

f B Train k independent LMs
Train one LM on ! ndomiy drawn] ' as ?J1:q:":: in parallel on one data

m?pwu;ghm I . domain each, without
syn:cross arl;gGPUs unified data corpus E:E data domains synchronizing across LMs

Branch-Train-Merge: Architecture

It's just a transformer! So no changes to the architecture or no new loss.

Branch-Train-Merge: Training

How to train:

Branch: Take a reference LLM or train
new one for a couple thousand steps
Branch: Copy its weights for each
domain

Train: Feed data of each domain
through its designated “expert”

Train: Train all experts independently
(no communication needed)

Merge: Merge experts into a single
model. This is done through
evaluation on a validation set.

Step 0: initialization

train seed LM on one corpus :

o

seen

} randomly drawn |
! data mintbatches |

seed corpus

v

branch k copies of
seed LM parameters

o000

paziuoaOUSE

Branch-Train-Merge

Step 1: branch from existing

experts, or seed LM i repeatb
4 with another batch
8200 D of domains
Step 2: branched training on *

k domains in parallel Step 3: merge k domain

g g expert LMs into
ELMforest
@000

merged ELMforest
k domalns

Branch-Train-Merge: Results. Better than transformers

8 Training Domains 8 Evaluation Domains
-13 —~M- Random Ensemble 26 m1B —~M- Random Ensemble
~p— Transformer-LM B -~ Transformer-LM
—§— ELMforest (Parameter Average) 125"‘ —§— ELMforest (Parameter Average)
21 -@- ELMforest (Ensemble) 24 [125 -@®- ELMforest (Ensemble)
125M
ml
)) lB. 8g
£19 1250 g2 o5
U [0}
B 5 1048 s 5350/», m—__ 10.4B
Y17 @ 750 L
a o
=
1.3B
15 350"4 760M o8 760M\>
.\ Kl .3B 18 ¢
2,3N7.60M Nm
QX 68 ¢
10 4B 16 ®
0 1K 2K 3K 4K 5K 6K 7K 8K 0 1K 2K 3K 4K 5K 6K 7K 8K

Training cost (GPU Hours) Training cost (GPU Hours)

Branch-Train-Merge: Results. Faster than transformers.

Average updates per second, normalized (1)

fully synchronized partially synchronized BTM: embarrassingly parallel
(TRANSFORMER-LM) (DEMIX) (branched ELMs)
125M 1.00 1.01 1.05
350M 1.00 1.11 1.23
750M 1.00 1.01 1.27

1.3B 1.00 0.97 1.33

Conclusion

If we want to maximize min(compute/waste, data movement/waste) then:

1. GPUs balance compute and data movement
2. Scaling laws help us reduce waste in our training setup

3. Mixture of experts help us to reduce waste by reducing unneeded
computation

a. BASE layers balances compute and data movement compared to GShard
b. Branch-train-merge eliminates data movement across experts entirely

Thank you!
Questions / Comments?

Why does this tenet make sense: Evidence from neuroscience

Study brains of all mammals.

Finding (1): brain structure correlated
with evolutionary tree structure

llllllllllllllllll ycaid ur ©yululiull,

Afrotheria

enarthra "
o SR,
a o
"
w Qolden d‘o
4 7 elephant shraw
I ol nt
t

Orey kangaroo

opossum &

Mass of cerebral cortex (grams)

Why does this tenet make sense: Humans have the most compute

Finding (2): Intelligence ~ number of neurons

Finding (3): Primate neurons scale differently

8,000 4

1,000 -4

100
e A cat has 50x more neurons than a bee

e Adog has 2x more neurons than a cat

e Adolphin/elephant/chimpanzee/crow has 5x more
neurons than a dog

e A humans has 10x more neurons than a
chimpanzees

10

1<

01

0 5 10 15 20
Neurons in cerebral cortex (billions)

Brain neurons (millions)

Why does this tenet make sense: Humans produce the most energy

Finding (4): Intelligence is energy limited: Chose 1: (a) large body, (b) large brain

Finding (5): Humans are more energy efficient and can afford more intelligence.

1.5 H. sapiens
L @
100,000 £ g’
il 3
10,000 - _8 8
]
§ 1
1,000 - E e a\'\w.
5 e 210° i d
" ® W 3,@\“9 H. erectus
100 H (3} a°
0.5 Sahelanthropus H. habilis
. W Pongo, Gorilla
10k Australopithecus 2
7 6 5 4 3 2 1 0
L T g Million of years ago

Body mass (kilograms)

