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Motivation

Many tasks in NLP can be cast as sequence labeling, where each
token (usually, word) gets its own label. Compare:

I Text classification: 〈x1, x2, . . . , xn〉 7→ y ∈ L
I Sequence labeling: 〈x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn〉, each
yi ∈ L

I Translation: x 7→ y ∈ V∗target
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Problems Typically Cast as Sequence Labeling

I supersense tagging (Ciaramita and Johnson, 2003)

I part-of-speech tagging (Church, 1988)

I morphosyntactic tagging (Habash and Rambow, 2005)

I segmentation into words (Sproat et al., 1996) or multiword
expressions (Schneider et al., 2014)

I code switching (Solorio and Liu, 2008)

I dialogue acts (Stolcke et al., 2000)

I spelling correction (Kernighan et al., 1990)

I word alignment (Vogel et al., 1996)

I named entity recognition (Bikel et al., 1999)

I compression (Conroy and O’Leary, 2001)
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Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.
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Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006)
used a lexicon called WordNet to define 41 semantic classes for
words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own
right! See
http://wordnetweb.princeton.edu/perl/webwn to get
an idea.
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Example Problem: Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006)
used a lexicon called WordNet to define 41 semantic classes for
words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own
right! See
http://wordnetweb.princeton.edu/perl/webwn to get
an idea.

This represents a coarsening of the annotations in the Semcor
corpus (Miller et al., 1993).
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Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a

box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can
watch the performance. “the royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible.
“his lying got him into a tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned. “the umpire warned the batter to stay in the
batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with
the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry
stayed in his box to avoid the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the
ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.

8 / 109



Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a

box of spare parts”  n.artifact

2. box/loge: private area in a theater or grandstand where a small group can
watch the performance. “the royal box was empty”  n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”
 n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible.
“his lying got him into a tight corner”  n.state

5. box: a rectangular drawing. “the flowchart contained many boxes”  n.shape

6. box/boxwood: evergreen shrubs or small trees  n.plant

7. box: any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned. “the umpire warned the batter to stay in the
batter’s box”  n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with
the driver”  n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry
stayed in his box to avoid the cold”  n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the
ear”  n.act

11. box/package: put into a box. “box the gift, please”  v.contact

12. box: hit with the fist. “I’ll box your ears!”  v.contact

13. box: engage in a boxing match.  v.competition
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Supersense Tagging Example

Clara Harris  ,  one  of the   guests   in the  box    ,  stood up and demanded water  . 

   x1         x2     x3    x4     x5   x6          x7         x8   x9      x10    x11    x12     x13  x14         x15           x16      x17 
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B-N.PERSO
N
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I-V.M
O
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O O O O O O O O O

   y1         y2     y3      y4    y5     y6       y7         y8   y9      y10    y11    y12     y13  y14         y15           y16      y17 

labeled spans

BIO encoding

input tokens
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Observations
I Lots of subproblems: Which words have supersenses? Which

words group together to form a multiword expression? For
those that do, which supersense?

I Every word’s label depends on the words around it, and their
labels.

I Segmentation problems can be cast as sequence labeling
(Ramshaw and Marcus, 1995):
I Two labels, B and I, if every word must be in some segment
I Three labels, B, I, and O, if some words are to be “discarded”
I Variants for five labels (E for end, S for singleton),

gaps/noncontiguous spans, and nesting, exist.

Concatenate B, I, etc., with labels to get labeled
segmentation.

I Some sequences of labels might be invalid under your
theory/label semantics.

I Evaluation: usually precision, recall, and F1 on labeled
segments.
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Big Abstraction: Linguistic Analysis

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.
I Some Y are very specialized, but others, like the one we

discuss here, show up again and again.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I More robust: supervised learning from annotated data
I Today: unsupervised pretraining followed by supervised

finetuning
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Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y∈Ln

Score(x,y;θ)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!
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Sequence Labeling v. 0: Local Classifiers

Define score of a word xi getting label y ∈ L in context:
score(x, i, y;θ), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y∈L

score(x, i, y;θ)

MLR
= argmax

y∈L
θ>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.
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score(x, i, y;θ), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y∈L

score(x, i, y;θ)

MLR
= argmax

y∈L
θ>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

Sometimes this works! E.g., one or two-layer neural network on
top of contextual word vectors (which are features of the whole
input x).
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Sequence Labeling v. 0: Local Classifiers
Define score of a word xi getting label y ∈ L in context:
score(x, i, y;θ), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y∈L

score(x, i, y;θ)

MLR
= argmax

y∈L
θ>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

Sometimes this works! E.g., one or two-layer neural network on
top of contextual word vectors (which are features of the whole
input x).

We can do better when there are predictable relationships among
labels.
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Reflection

If we return to the original formulation,

ŷ = argmax
y∈Ln

Score(x,y;θ),

how can we write “Score” in terms of the notation on the last
slide?
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Local Classifiers (v. 0)

Lightweight; no need to learn anything new! But labels can’t affect
each other.
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Sequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i−1, y;θ). (From here, we won’t
always write θ, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y∈L

score(x, i, ŷ1:i−1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.
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Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i−1, y;θ). (From here, we won’t
always write θ, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y∈L

score(x, i, ŷ1:i−1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” effects of a mistake can be catastrophic.
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Sequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i−1, y;θ). (From here, we won’t
always write θ, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y∈L

score(x, i, ŷ1:i−1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” effects of a mistake can be catastrophic.

There is much literature on methods for training, and for decoding,
with models like this. Important decoding method in NLP: beam
search.
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Beam Search for Sequential Classifiers

Input: x (length n), a sequential classifier’s scoring function score,
and beam width k

Let H0 score hypotheses at position 0, defining only H0(〈〉) = 0.
For i ∈ {1, . . . , n}:
I Empty C.
I For each hypothesis ŷ1:i−1 scored by Hi−1:

I For each y ∈ L, place new hypothesis
ŷ1:i−1y → Hi−1(ŷ1:i−1) + score(x, i, ŷ1:i−1, y) into C.

I Let Hi be the k-best scored elements of C.

Output: best scored element of Hn.
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Notes on Beam Search for Sequential Classifiers

I Runtime is O(n2kL), space is O(n2k).

I You can improve runtime (e.g., to O(nkL)) if computation is
shared across different i (often true with neural networks).

I Special cases:
I k = 1 is greedy left-to-right decoding.
I At k = Ln, you’re doing brute force, exhaustive search.

I Generally: no guarantee.
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Reflection

Suppose your label set is built out of BIO tags. For an output ŷ to
be well-formed, it suffices to ensure that it contains no “OI” label
bigrams.

How would you modify beam search to guarantee well-formedness?
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Sequential Classifiers (v. 1)

Very powerful! Algorithms lack guarantees.
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A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:
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The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

y1

y1 ∼ pstart(Y )
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The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1
↑
y1

x1 ∼ pemission(X | y1)

28 / 109



A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1
↑
y1 → y2

y2 ∼ ptransition(Y | y1)
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x2 ∼ pemission(X | y2)
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A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2
↑ ↑
y1 → y2 → y3

y3 ∼ ptransition(Y | y2)
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A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3
↑ ↑ ↑
y1 → y2 → y3

x3 ∼ pemission(X | y3)
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A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3
↑ ↑ ↑
y1 → y2 → y3 → y4

y4 ∼ ptransition(Y | y3)
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A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
↑ ↑ ↑ ↑
y1 → y2 → y3 → y4

x4 ∼ pemission(X | y4)
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A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
↑ ↑ ↑ ↑
y1 → y2 → y3 → y4 → 8

y5 ∼ ptransition(Y | y4)
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Sequence Labeling v. 2: Hidden Markov Models

By convention, yn+1 = 8 is always the “stop label.”

p(X = x,Y = y) = pstart(y1)·
n∏

i=1

pemission(xi | yi) · ptransition(yi+1 | yi)

ŷ = argmax
y∈Ln

p(Y = y |X = x)

= argmax
y∈Ln

p(X = x,Y = y)

= argmax
y∈Ln

log p(X = x,Y = y)

We can solve the global decoding problem exactly (i.e., find the
model-optimal ŷ) in O(nL2) time and O(nL) space using the
Viterbi algorithm (more later).
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HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.
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Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.
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Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

pemission is a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).
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HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

pemission is a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).

ptransition is exactly a bigram (first-order Markov) model over
labels.
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Classical HMMs vs. Classifiers

With classifiers (local or sequential), the hard work is:

I For humans: choosing features or designing a neural
architecture that can learn good features

I For machines: estimating the parameters (typically by SGD);
(in the sequential case) searching for “argmax”
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Classical HMMs vs. Classifiers

With classifiers (local or sequential), the hard work is:

I For humans: choosing features or designing a neural
architecture that can learn good features

I For machines: estimating the parameters (typically by SGD);
(in the sequential case) searching for “argmax”

With classical HMMs, the parameters (ptransition , pemission , pstart)
have a closed form if you have labeled data! The hardest part is
implementing the algorithm for choosing the “argmax” label
sequence. Downside:

I You don’t get to design or learn features.
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Reflection

The runtime of the model-optimal decoding algorithm for HMMs
depends quadratically on the size of L. For some problems (e.g.,
supersense tagging) the label set can be large. Can you think of a
way to trade the guarantee of model-optimality for speed, while
still using the HMM?
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Hidden Markov Models (v. 2)

Algorithmically beautiful; lack of features is unsatisfying.
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Sequence Labeling v. 3

To endow HMMs with features, we can replace the “lookup”
probabilities (ptransition , pemission , pstart) with scoring functions.
This idea was explored by Berg-Kirkpatrick et al. (2010).
Classical HMM (v. 2):

ŷ = argmax
y∈Ln

log pstart(y1) +

n∑
i=1

(
log pemission(xi | yi)
+ log ptransition(yi+1 | yi)

)
This approach (v. 3):

ŷ = argmax
y∈Ln

sstart(y1) +
n∑

i=1

semission(xi, yi) + stransition(yi, yi+1)

Each “s” could be a linear scoring function (like in MLR), perhaps
using word or label vectors. For now, I’m hiding the parameters of
each s.
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Notes on V. 3

I Decoding is essentially the same as the HMM: Viterbi
algorithm.

I Learning is now complicated and depends on the form of each
“s,” though I promise each iteration will be efficient. (Put
this on my tab, along with Viterbi.)

I No part of the the scoring function looks at neighboring words.

48 / 109



Notes on V. 3

I Decoding is essentially the same as the HMM: Viterbi
algorithm.

I Learning is now complicated and depends on the form of each
“s,” though I promise each iteration will be efficient. (Put
this on my tab, along with Viterbi.)

I No part of the the scoring function looks at neighboring words.

49 / 109
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I Decoding is essentially the same as the HMM: Viterbi
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V. 3

Brings features to HMMs, but learning is going to require more
than just counting and normalizing.
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Sequence Labeling v. 4

Let each scoring component (“s”) “see” the whole input. By
convention, y0 =© is always the “start label.”

ŷ = argmax
y∈Ln

Score(x,y)︷ ︸︸ ︷
n∑

i=0

s(x, i, yi, yi+1)

Note that x can have arbitrary length, so we need “s” functions
that are capable of adapting to variable-length input.
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Notes on V. 4

I Decoding is essentially the same as the HMM and v. 3:
Viterbi algorithm.

I As with v. 3, learning is complicated and depends on the form
of each “s.”

I This model strictly generalizes local classifiers (v. 0), the
HMM (v. 2), and v. 3.
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Notes on V. 4

I Decoding is essentially the same as the HMM and v. 3:
Viterbi algorithm.

I As with v. 3, learning is complicated and depends on the form
of each “s.”

I This model strictly generalizes local classifiers (v. 0), the
HMM (v. 2), and v. 3.
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V. 4

Even better features for HMMs, with the promise of efficient
decoding and learning.
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Reflection

Claim: As we move from v. 1 (sequential classifiers) to v. 4 to v. 0
(local classifiers), the scoring functions available become strictly
less expressive.

v. 1 v. 4 v. 0
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Reflection

Claim: As we move from v. 1 (sequential classifiers) to v. 4 to v. 0
(local classifiers), the scoring functions available become strictly
less expressive.

v. 1 v. 4 v. 0

Compare v. 1 and v. 4. What kinds of features can you use in v. 1
that you can’t use in v. 4?
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Reflection

Claim: As we move from v. 1 (sequential classifiers) to v. 4 to v. 0
(local classifiers), the scoring functions available become strictly
less expressive.

v. 1 v. 4 v. 0

Compare v. 1 and v. 4. What kinds of features can you use in v. 1
that you can’t use in v. 4?

Now consider v. 4 and v. 0. What kinds of features can you use in
v. 4 that you can’t use in v. 0?
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Where We Are

0 1 2 3 4

Score
s(x, i, yi) s(x, i,y1:i)

emission/ s(xi, yi)+ s(x, i, yi, yi+1)decomp. transition s(yi, yi+1)

learn
SGD ? count & ? ?

normalize

decode local
beam

Viterbi Viterbi Viterbi
search
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The Main Dish
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Two Problems to Solve

1. Decoding: the Viterbi algorithm for choosing ŷ.
I Usually taught for classical HMMs (v. 2); I will teach it for

v. 4, abstracting away “s.”

2. Learning: estimating the parameters of each s function.
I Depending on your choices here, you arrive at the structured

perceptron, the classical conditional random field (CRF),
neural CRFs, and more.
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A Data Structure

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

The cell at row j, column i will hold information pertaining to
choosing ŷi = `j .
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The End of the Sequence

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

ŷn = argmax
yn∈L

n∑
i=0

s(x, i, yi, yi+1)

= argmax
yn∈L

s(x, i, yn−1, yn) + s(x, i, yn,8)

The decision about ŷn is a function of yn−1, x, and nothing else!
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High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.
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I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

67 / 109



High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.
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Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)
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in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)
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Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

♥n−1(y) = max
yn−2∈L

s(x, n− 2, yn−2, y) + ♥n−2(yn−2)
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Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

♥n−1(y) = max
yn−2∈L

s(x, n− 2, yn−2, y) + ♥n−2(yn−2)

...

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

72 / 109



Recurrence

First, think about the score of the best sequence.

Let ♥i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

♥n−1(y) = max
yn−2∈L

s(x, n− 2, yn−2, y) + ♥n−2(yn−2)

...

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

...

♥1(y) = s(x, 0,©, y)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1
`2
...
`L
8
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1)
`2 ♥1(`2)
...
`L ♥1(`L)
8

♥1(y) = s(x, 0,©, y)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1) ♥2(`1)
`2 ♥1(`2) ♥2(`2)
...
`L ♥1(`L) ♥2(`L)
8

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1) ♥2(`1) ♥n(`1)
`2 ♥1(`2) ♥2(`2) ♥n(`2)
...
`L ♥1(`L) ♥2(`L) ♥n(`L)
8

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ♥1(`1) ♥2(`1) ♥n(`1)
`2 ♥1(`2) ♥2(`2) ♥n(`2)
...
`L ♥1(`L) ♥2(`L) ♥n(`L)
8 ♥n+1(8)

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)
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High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn−1, x, and nothing
else!

I If, for each value of yn−1, we knew the best (n− 1)-length
label prefix y1:n−1, then picking ŷn (and ŷn−1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ♥i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1

`2

...

`L

8
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1)
bp1(`1)

`2
♥1(`2)
bp1(`2)

...

`L
♥1(`L)
bp1(`L)

8

♥1(y) = s(x, 0,©, y)
bp1(y) =©
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1) ♥2(`1)
bp1(`1) bp2(`1)

`2
♥1(`2) ♥2(`2)
bp1(`2) bp2(`2)

...

`L
♥1(`L) ♥2(`L)
bp1(`L) bp2(`L)

8

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)

bpi(y) = argmax
yi−1∈L

s(x, i− 1, yi−1, y) + ♥i−1(yi−1)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1) ♥2(`1) ♥n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
♥1(`2) ♥2(`2) ♥n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
♥1(`L) ♥2(`L) ♥n(`L)
bp1(`L) bp2(`L) bpn(`L)

8

♥n(y) = max
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)

bpn(y) = argmax
yn−1∈L

s(x, n− 1, yn−1, y) + ♥n−1(yn−1)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
♥1(`1) ♥2(`1) ♥n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
♥1(`2) ♥2(`2) ♥n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
♥1(`L) ♥2(`L) ♥n(`L)
bp1(`L) bp2(`L) bpn(`L)

8
♥n+1(8)
bpn+1(8)

♥n+1(8) = max
yn∈L

s(x, n, yn,8) + ♥n(yn)

bpn+1(8) = argmax
yn∈L

s(x, n, yn,8) + ♥n(yn)
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Full Viterbi Procedure

Input: scores s(x, i, y, y′), for all i ∈ {0, . . . , n}, y, y′ ∈ L

Output: ŷ

1. Base case: ♥1(y) = s(x, 0,©, y)
2. For i ∈ {2, . . . , n+ 1}:

I Solve for ♥i(∗) and bpi(∗).

♥i(y) = max
yi−1∈L

s(x, i− 1, yi−1, y) +♥i−1(yi−1),

bpi(y) = argmax
yi−1∈L

s(x, i− 1, yi−1, y) +♥i−1(yi−1)

(At n+ 1 we’re only interested in y = 8.)

3. ŷn+1 ←8
4. For i ∈ {n, . . . , 1}:

I ŷi ← bpi+1(ŷi+1)
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

86 / 109



Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above.
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.”
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.” O(nL2)
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Why it Works

Viterbi exploits the distributivity property:

max
y1:n

n∑
i=0

s(x, i, yi, yi+1) = max
yn

s(x, i, yn,8) + max
y1:n−1

n−1∑
i=0

s(x, i, yi, yi+1)

= max
yn

s(x, i, yn,8) + max
yn−1

s(x, i, yn − 1, yn)

+ max
y1:n−2

n−2∑
i=0

s(x, i, yi, yi+1)

Max plus max plus max plus max plus . . .
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Back to “s”

We haven’t said much about the function that scores candidate
label pairs at different positions, s(x, i, y, y′).

This function is very important; two common choices are:

I Expert-designed, task-specific features f(x, i, y, y′) and
weights θ

I A neural network that encodes xi in context, yi, and yi+1 and
gives back a goodness score

Either way, let θ denote the parameters of s. From now on, we’ll
use s(x, i, y, y′;θ) and Score(x,y;θ) to emphasize that “s” is a
function of parameters θ we need to estimate.
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Probabilistic View of Learning

As we’ve done before, we start with the principle of maximum
likelihood to estimate θ:

θ∗ = argmax
θ∈Rd

T∏
i=1

p(Y = yi |X = xi;θ)

= arg max
θ∈Rd

T∑
i=1

log p(Y = yi |X = xi;θ)

= arg min
θ∈Rd

T∑
i=1

− log p(Y = yi |X = xi;θ)︸ ︷︷ ︸
sometimes called “log loss” or “cross entropy”

Next, we’ll drill down into “p(Y = yi |X = xi;θ).”
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Conditional Random Fields
Lafferty et al. (2001)

CRFs are a tremendously influential model that generalizes
multinomial logistic regression to structured outputs like sequences.

pCRF(y | x;θ) =
exp Score(x,y;θ)

Z(x;θ)

Z(x;θ) =
∑

y′∈Y(x)

exp Score(x,y′;θ)

− log pCRF(y | x;θ) = −Score(x,y;θ)︸ ︷︷ ︸
“hope”

+ logZ(x;θ)︸ ︷︷ ︸
“fear”

So, our“CRF”:

I Uses Viterbi for decoding (our v. 4 sequence labeler)

I Trains parameters to maximize likelihood (like MLR and NNs)
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Conditional Random Field
Lafferty et al. (2001)
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Sequence-Level Log Loss

Here’s the maximum likelihood learning problem (equivalently,
sequence-level log loss):

θ∗ = argmin
θ∈Rd

T∑
i=1

−Score(xi,yi;θ) + logZ(xi;θ)

If we can calculate and differentiate (w.r.t. θ) the Score and Z
functions, we can use SGD to learn.
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Reflection

Given a training instance 〈xi,yi〉, what do you need to do to
calculate Score(xi,yi;θ)?
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Calculating Z(x;θ)

Good news! The algorithm that gives us Z is almost exactly like
the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label
sequences, given x, in the same asymptotic time and space as
Viterbi.

Let αi(y) be the sum of all (exponentiated) scores of label prefixes
of length i, ending in y.
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Some Algebra

Given the decomposition

Score(x,y;θ) =

n∑
i=0

s(x, i, yi, yi+1;θ),

it holds that

exp Score(x,y;θ) =

n∏
i=0

es(x,i,yi,yi+1;θ),

and therefore

Z(x;θ) =
∑

y′∈Y(x)

n∏
i=0

es(x,i,y
′
i,y
′
i+1;θ)
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Forward Algorithm

Input: scores s(x, i, y, y′;θ), for all i ∈ {0, . . . , n}, y, y′ ∈ L

Output: Z(x;θ)

1. Base case: α1(y) = es(x,0,©,y;θ)

2. For i ∈ {2, . . . , n+ 1}:
I Solve for αi(∗).

αi(y) =
∑

yi−1∈L
es(x,i−1,yi−1,y;θ) × αi−1(yi−1)

(At n+ 1 we’re only interested in y = 8.)

3. Return αn+1(8), which is equal to Z(x;θ).
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Intuitions about the Forward Algorithm

Just as Viterbi changes “scary max over big sum” to “max plus
max plus max plus . . . ,”
the Forward algorithm changes “scary sum over big product” to
“plus times plus times plus times . . . .”

If you organize the operations in the other direction, you get the
Backward algorithm.

You can differentiate Z with respect to s, because it’s all just exp,
addition, and multiplication. If you mechanically derive the partial
derivatives, you will rediscover the Backward algorithm.
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Computation Graph View of CRF
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Reflection

Earlier in the lecture, I promised that learning would have some
guarantees. Consider:

I The runtime and space requirements for calculating the loss
and gradient, as a function of the data.

I The conditions under which we can confidently expect
convergence to a global optimum of the likelihood if we use
SGD.
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An Alternative: Structured Perceptron

Recall that CRF = v. 4 + sequence-level log loss.

Perceptron loss (Collins, 2002):

θ∗ = argmin
θ∈Rd

T∑
i=1

−Score(xi,yi;θ) + max
y

Score(xi,y;θ)

The structured perceptron = v. 4 + perceptron loss.
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Regularization

Just as in classification with linear and non-linear models, you’ll
want to take steps to avoid overfitting.

The same tools (e.g., `2 and `1 penalties for linear model weights,
and dropout for neural networks) can be used here.
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Digestif: Connections and Generalizations

V. 2–4 are weighted finite-state machines (think of labels as
states).

The models we saw today are all “first order” sequence models in
the sense that each yi only interacts with one immediate neighbor
through s.

I Second-order: Score(x,y) =
∑n

i=0 s(x, i, yi, yi+1, yi+2)

I mth-order: Score(x,y) =
∑n

i=0 s(x, i,yi:i+m)

Viterbi for mth order has O(nLm+1) runtime.
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