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Motivation I: Autocomplete

You’re in the middle of writing an email or text message, and the
system predicts your next . . .

The heart of the language modeling task: what is the next word
likely to be, given the preceding ones?
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Motivation II: Speech Recognition

Successful speech recognition requires generating a word sequence
that is:

I Faithful to the acoustic input

I Fluent

If we’re mapping acoustics a to word sequences w, then:

w∗ = argmax
w

Faithfulness(w;a) + Fluency(w)

Language models can provide a “fluency” score.
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Motivation III: Other Text-Output Applications

Other tasks that have text (or speech) as output:

I translation from one language to another

I conversational systems

I document summarization

I image captioning

I optical character recognition

I spelling and grammar correction

If we’re mapping inputs i to word sequences w, then:

w∗ = argmax
w

Faithfulness(w; i) + Fluency(w)

Language models can provide a “fluency” score.
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Motivation IV: Science

If we have two theories about language, A and B, and

Surprise(A; Data) < Surprise(B; Data),

then A is the preferred theory.

Language models can give us a notion of “surprise.”
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Very Quick Review of Probability

I Event space (e.g., X , Y)—in this class, usually discrete

I Random variables (e.g., X, Y )

I Typical statement: “random variable X takes value x ∈ X
with probability p(X = x), or, in shorthand, p(x)”

I Joint probability: p(X = x, Y = y)

I Conditional probability: p(X = x | Y = y)

I Always true:
p(X = x, Y = y) = p(X = x | Y = y) · p(Y = y)
= p(Y = y | X = x) · p(X = x)

I Sometimes true: p(X = x, Y = y) = p(X = x) · p(Y = y)

I The difference between true and estimated probability
distributions
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Notation and Definitions

I V is a finite set of (discrete) symbols (words or characters);
V = |V|

I V∗ is the (infinite) set of sequences of symbols from V
I In language modeling, we imagine a sequence of random

variables X1, X2, . . . that continues until some Xn takes the
value “8” (a special end-of-sequence symbol).

I V† is the (infinite) set of sequences of V symbols, with a
single 8, which is at the end.
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The Language Modeling Problem

Input: training data x = 〈x1, . . . , xN 〉 in V†

I Sometimes it’s useful to consider a collection of observations,
each in V†, but it complicates notation.

Output: p : V† → R

Think of p as a measure of plausibility.
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Questions to Answer

1. How do we quantitatively evaluate language models?

2. How do we build language models?

3. How do we use language models?
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Probabilistic Language Model

We let p be a probability distribution, which means that

∀x ∈ V†, p(x) ≥ 0∑
x∈V†

p(x) = 1

Advantages:

I Interpretability

I We can apply the maximum likelihood principle to build a
language model from data
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Maximum Likelihood Principle/Estimation

Let x be your observations (data).

If P is the set of probability distributions that are consistent with
your assumptions about the data, then the distribution you should
choose is:

pMLE = argmax
p∈P

p(x)

19 / 149



Maximum Likelihood Principle/Estimation

Let x be your observations (data).

If P is the set of probability distributions that are consistent with
your assumptions about the data, then the distribution you should
choose is:

pMLE = argmax
p∈P

p(x)

In practice, we usually let P be a family of probabilistic models
with parameters θ and choose:

θMLE = argmax
θ

p(x;θ)

20 / 149



MLE Example

Let x be a sequence of N observed coin flips, i.e., drawn from
{h, t}+.
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MLE Example

Let x be a sequence of N observed coin flips, i.e., drawn from
{h, t}+.

Assumption: a single coin flipped repeatedly, so the observations
are independent and identically distributed. The probability that
the coin comes up heads is θ.

p(x; θ) =

N∏
i=1

θ1{xi=h} · (1− θ)1{xi=t}

θMLE = argmax
θ∈[0,1]

p(x; θ)

=

∑n
i=1 1 {xi = h}

N
=

countx(h)

N
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MLE Example

Let x be a sequence of N observed coin flips, i.e., drawn from
{h, t}+.

Assumption: a single coin flipped repeatedly, so the observations
are independent and identically distributed. The probability that
the coin comes up heads is θ.

p(x; θ) =

N∏
i=1

θ1{xi=h} · (1− θ)1{xi=t}

θMLE = argmax
θ∈[0,1]

p(x; θ)

=

∑n
i=1 1 {xi = h}

N
=

countx(h)

N

For binomial (and more generally, multinomial) event-based
probabilistic models, the MLE equates to “count and normalize.”
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Evaluation of Language Models

We should prefer a language model that is less “surprised” by new
data that wasn’t used to build it.

1. Probability of the test data: p(x̄;θ)

2. That value will be tiny, because V† is infinitely large, and p
will decrease exponentially in the length of x̄. So we take a
negated log and divide by the number of words:

CrossEntropy(p(·;θ); x̄) =
− log2 p(x̄;θ)

N̄

You can interpret cross-entropy in “bits per word.” Lower is
better.

3. Perplexity is 2CrossEntropy(p(·;θ);x̄). Special cases:
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Evaluation of Language Models
Given a test dataset x̄ (of N̄ words), we arrive at the standard
intrinsic evaluation in three steps:

1. Probability of the test data: p(x̄;θ)
2. That value will be tiny, because V† is infinitely large, and p

will decrease exponentially in the length of x̄. So we take a
negated log and divide by the number of words:

CrossEntropy(p(·;θ); x̄) =
− log2 p(x̄;θ)

N̄
You can interpret cross-entropy in “bits per word.” Lower is
better.

3. Perplexity is 2CrossEntropy(p(·;θ);x̄). Special cases:
I If the model were to put all of its probability on x̄, perplexity

would be 1 (minimal possible value).
I If the model assigns zero probability to x̄, perplexity is +∞.

So it’s important to make sure that p assigns strictly positive
probability to every sequence of words.

You can interpret perplexity as “effective size of the
vocabulary.”
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Perplexity

I Warning: you can only compare perplexity of models that use
exactly the same V.

I Perplexity on conventionally accepted test sets is often
reported in papers.

I I won’t discuss perplexity numbers, because:
I Perplexity is only an intermediate measure of performance.
I Understanding the models is more important than

remembering how well they perform on specific train/test sets;
your data will always be different!

I If you’re curious, look up numbers in the literature; always
take them with a grain of salt.
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Reflection

We can also measure perplexity on the training data. Do you
expect training perplexity to be lower (i.e., better) than test
perplexity, or higher (i.e., worse)? Why?

32 / 149



Is “finite V” realistic?

No
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Is “finite V” realistic?

No
no
n0
-no

notta
No

/no
//no
(no
|no
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Dealing with Out-of-Vocabulary Terms

I Define a special OOV or “unknown” symbol unk. Transform
some (or all) rare words in the training data to unk.
I / You cannot fairly compare two language models that apply

different unk transformations!

I Build a language model at the character level.

I Some new methods use data-driven, deterministic
tokenization schemes that segment some words into smaller
parts to reduce the effective vocabulary size (Sennrich et al.,
2016; Wu et al., 2016).
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Our Universe, For Now

We will focus on probabilistic language models with a fixed, finite
vocabulary V.

Training will start from the maximum likelihood principle.

Training data is x = 〈x1, . . . , xN 〉 and we evaluate perplexity on
test data x̄ = 〈x̄1, . . . , x̄N̄ 〉.
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A First Language Model

p(x) =
count(x)

N
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A First Language Model

p(x) =
count(x)

N

What if x̄ is not (in) the training data?
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A First Language Model

p(x) =
count(x)

N

If we think of the training data as multiple sequences, the issue
remains.
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Using the Chain Rule

p(X = x) =


p(X1 = x1)
· p(X2 = x2 | X1 = x1)
· p(X3 = x3 |X1:2 = x1:2)
...
· p(XN = 8 |X1:N−1 = x1:N−1)


=

N∏
i=1

p(Xi = xi |X1:i−1 = x1:i−1)

The game is to “summarize” the history well enough to predict
each word in turn.

40 / 149



Unigram Model: Empty History

p(X = x) =

N∏
i=1

p(Xi = xi |X1:i−1 = x1:i−1)

assumption
=

N∏
i=1

p(Xi = xi;θ) =

N∏
i=1

θxi

Maximum likelihood estimate: for every v ∈ V,

θ∗v =

∑N
i=1 1 {xi = v}

N

=
countx(v)

N

A full derivation is given at the end of the slides.
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Example

The probability of

Presidents tell lies .

is:

p(X1 = Presidents) · p(X2 = tell) · p(X3 = lies) · p(X4 = .) · p(X5 = 8)

In unigram model notation:

θPresidents · θtell · θlies · θ. · θ8

Using the maximum likelihood estimate for θ, we could calculate:

countx(Presidents)

N
· countx(tell)

N
· · · countx(8)

N
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Reflection

Consider a unigram model that is completely agnostic; it assigns
θv = 1

V for all v ∈ V.

What will its perplexity be? Hint: as long as the test data is
restricted to words in V, the test data doesn’t matter!
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Unigram Models: Assessment

Pros:

I Easy to understand

I Cheap

I Good enough for
information retrieval
(maybe)

Cons:

I Fixed, known vocabulary
assumption

I “Bag of words” assumption
is linguistically inaccurate
I p(the the the the)�

p(I want ice cream)
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Aperitif: Markov Models ≡ n-gram Models

p(X = x) =

N∏
i=1

p(Xi = xi |X1:i−1 = x1:i−1)

assumption
=

N∏
i=1

p(Xi = xi | Xi−n+1:i−1 = xi−n+1:i−1;θ)

=

N∏
i=1

θxi|xi−n+1:i−1

(n− 1)th-order Markov assumption ≡ n-gram model

I Unigram model is the n = 1 case

I For a long time, trigram models (n = 3) were widely used

I 5-gram models (n = 5) were common in MT for a time
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Reflection

What is the maximum likelihood estimate for the n-gram model’s
probability of v given a (n− 1)-length history h?
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Solution

θv|h = p(Xi = v |Xi−n+1:i−1 = h)

=
p(Xi = v,Xi−n+1:i−1 = h)

p(Xi−n+1:i−1 = h)

=
countx(hv)

N

/
countx(h)

N

=
countx(hv)

countx(h)

A common mistake is to forget that θv|h is a conditional
probability and estimate the joint probability p(hv) instead.
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Reflection

Given a sequence of words, what procedure would you use to
calculate its n-gram probability? To make this procedure as fast as
possible, what properties would you want for the data structure
that stores θ?
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Choosing n is a Balancing Act

If n is too small, your model can’t learn very much about language.

As n gets larger:

I The number of parameters grows with O(V n).

I Most n-grams will never be observed, so you’ll have lots of
zero probability n-grams. This is an example of data sparsity.

I Your model depends increasingly on the training data; you
need (lots) more data to learn to generalize well.

This is a beautiful illustration of the bias-variance tradeoff.
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Language Modeling Research in a Nutshell

a language model increase training data
(larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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Smoothing: Attempts to Improve Inductive Bias

The game: prevent θv|h = 0 for any v and h, while keeping∑
x p(x) = 1 so that perplexity stays meaningful.

I Simple method: add λ > 0 to every count (including counts
of zero) before normalizing (the textbook calls this “Lidstone”
smoothing)

I Longstanding champion: modified Kneser-Ney smoothing
(Chen and Goodman, 1998)

I Reasonable, easy solution when you don’t care about
perplexity: stupid backoff (Brants et al., 2007)
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Hyperparameters

After we choose a general technical approach, there are often
“micro-decisions” in execution that affect perplexity, task
performance, etc. E.g., n, or λ in Lidstone smoothing. We call
these hyperparameters.
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Hyperparameters

After we choose a general technical approach, there are often
“micro-decisions” in execution that affect perplexity, task
performance, etc. E.g., n, or λ in Lidstone smoothing. We call
these hyperparameters.

Hyperparameters are usually scientifically “uninteresting,” and we
don’t have a priori reasons to inform our choices.

Solution: try different values, and choose one using a validation
dataset.

I Never the training set, because you want hyperparaemeter
values that generalize well.

I Never the test set, because that’s cheating!

Better solution: tune them using a systematic and replicable search
procedure; report this procedure. See Dodge et al. (2019).
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n-gram Models: Assessment

Pros:

I Easy to understand
I Cheap (with modern

hardware; Lin and Dyer,
2010)

I Fine in some applications
and when training data is
scarce

Cons:

I Fixed, known vocabulary
assumption

I Markov assumption is
linguistically inaccurate
I (But not as bad as

unigram models!)

I Data sparseness problem
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The Main Dish
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Neural Language Models

Instead of a lookup for a word and fixed-length history (θv|h),
define a vector function:

p(Xi |X1:i−1 = x1:i−1) = NN(enc(x1:i−1);θ)

where θ do the work of encoding the history and transforming it
into a distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”
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What is a Neural Network?

Like many things from machine learning, the name invites
confusion.

Formally, it’s a function NN from θ (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,
or tensors, or collections of them).

Almost always, NN is differentiable with respect to θ and
nonlinear with respect to the data input.

I “Nonlinear” means there does not exist a matrix A such that
NN(v;θ) = Av, for all v.
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What is a Neural Network?

Like many things from machine learning, the name invites
confusion.

Formally, it’s a function NN from θ (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,
or tensors, or collections of them).

Almost always, NN is differentiable with respect to θ and
nonlinear with respect to the data input.

I “Nonlinear” means there does not exist a matrix A such that
NN(v;θ) = Av, for all v.

For a neural language model:

I We need an encoder that maps word histories h to
vectors/matrices.

I We interpret the output as p(Xi |X1:i−1 = h).
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NLM v. 0: MLR
Lau et al. (1993), among others

If you let MLR’s label set be V, then you can reduce language
modeling to training an MLR model on N instances (one per
word).
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NLM v. 0: MLR
Lau et al. (1993), among others

If you let MLR’s label set be V, then you can reduce language
modeling to training an MLR model on N instances (one per
word).

I Note that the instances will not be independent, so it’s a bit
different from the classification setup.
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If you let MLR’s label set be V, then you can reduce language
modeling to training an MLR model on N instances (one per
word).

The MLR probability function is differentiable with respect to θ
(its weights).

Remember, though, that to do this, you need to decide what
features of h and each candidate next word to use.

These models were usually called “maximum entropy” (not neural)
language models, and the computational cost made them largely
impractical in the 1990s.

For training, we moved from specialized algorithms to generic
convex optimization to SGD.
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Reflection

Recalling what you know about multinomial logistic regression,
what do you think made them impractical for realistic language
modeling?

70 / 149



Multinomial Logistic Regression

If you understand the principles, it’s easier to learn the models to
come.
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Why So Many Models?

We’re going to see a lot of neural network approaches to language
modeling.

Just like MLR, which has been used extensively to solve many
problems, the general ideas used in the series of models shown here
have been used across NLP.
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Two Key Developments

1. “Embedding” words as vectors.

2. Layering to increase capacity (i.e., the set of distributions that
can be represented).

Same as before: we run stochastic (sub)gradient descent
algorithms to maximize likelihood.

Different form before: likelihood is not necessarily convex in θ.
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“One Hot” Vectors

Let ei ∈ RV be the ith column of the identity matrix I.

e1 =


1
0
...
0
0

 ; e2 =


0
1
...
0
0

 ; . . . ; eV =


0
0
...
0
1



ei is the “one hot” vector for the ith word in V.
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“One Hot” Vectors

Let ei ∈ RV be the ith column of the identity matrix I.

e1 =


1
0
...
0
0

 ; e2 =


0
1
...
0
0

 ; . . . ; eV =


0
0
...
0
1


ei is the “one hot” vector for the ith word in V.

A neural language model starts by “looking up” each word by
multiplying its one hot vector by a matrix M

V × d

; e>v M = mv, the

“embedding” of v.

M becomes part of the parameters (θ).
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Sequences of Word Vectors

Given a word sequence 〈v1, v2, . . . , vk〉, we transform it into a
sequence of word vectors,

mv1 ,mv2 , . . . ,mvk

Using neural networks in NLP requires decisions about how to deal
with variable-length input.
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Adding Layers

Neural networks are built by composing functions, a mix of

I affine, v′ = Wv + b (note that the dimensionality of v and
v′ might be different)

I nonlinearity, including softmax (which we saw in the MLR
lecture), elementwise hyperbolic tangent

v′i = tanh(vi) =
evi − e−vi
evi + e−vi

,

and rectified linear (“relu”) units, v′i = max(0, vi).
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Adding Layers

Neural networks are built by composing functions, a mix of

I affine, v′ = Wv + b (note that the dimensionality of v and
v′ might be different)

I nonlinearity, including softmax (which we saw in the MLR
lecture), elementwise hyperbolic tangent

v′i = tanh(vi) =
evi − e−vi
evi + e−vi

,

and rectified linear (“relu”) units, v′i = max(0, vi).

The typical pattern is affine, nonlinear, affine, nonlinear, . . .

More layers ⇒ increased capacity (more parameters, more
computational cost, better training data fit)
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Language Modeling Research in a Nutshell

a language model increase training data
(larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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NLM v. 1: Feedforward
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | h1, . . . , hn−1) =

softmax

(
b
V

+

n−1∑
j=1

mhj
d

Aj
d× V

+ W
V ×H

tanh

(
u
H

+

n−1∑
j=1

m>hj Tj
d×H︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
nonlinearity︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
nonlinearity

Parameters θ include M and everything in pink.

Hyperparameters: dimensionalities d and H
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Feedforward NLM Computation Graph
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Interpretation?

It’s a bit like an MLR language model with two kinds of
“features”:

I Concatenation of context-word embeddings vectors mhj (but
these “word feature” vectors are themselves learned, not fixed
in advance)

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine
transformations.

No single parameter will have any intuitive meaning.
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Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+ (n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+ (n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003), V ≈ 18000 (after OOV processing);
d ∈ {30, 60}; H ∈ {50, 100}; n− 1 = 5. So D = 461V + 30100
parameters, compared to O(V n) for classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a
bit better, but training was slower to converge.

I If we averaged mhj instead of concatenating, we’d get to
221V + 6100 (this is a variant of “continuous bag of words,”
Mikolov et al., 2013; see also the log-bilinear model in extra
slides).
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a
linear function of x1 and x2.

I With high-dimensional inputs, there are a lot of conjunctive
features to search through. For MLR-style models, Della Pietra
et al. (1997) attempted this, greedily.

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned, simultaneously, to the prediction problem.

I Word embeddings: a powerful idea!
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Reminders about Training

Good news: apply maximum likelihood principle and SGD as with
MLR (v. 0). Lots more details in Eisenstein (2019) section 3.3 and
Goldberg (2015).

Bad news:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model, the
initial value of θ (usually random), and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5
epochs took 3 weeks on 40 CPUs).
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Observations about NLMs (So Far)

I There’s no knowledge built in that the most recent word hn−1

is “closer” than earlier ones; it must be learned (probably
learnable?).

I Hyperparameters: in addition to choosing n, also have to
choose dimensionalities d and H.

I Parameters of these models are mostly hard to interpret.

I Architectures are not especially intuitive.

I Impressive perplexity gains got people’s interest.
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Observations about NLMs (So Far)

I There’s no knowledge built in that the most recent word hn−1

is “closer” than earlier ones; it must be learned (probably
learnable?).

I Hyperparameters: in addition to choosing n, also have to
choose dimensionalities d and H.

I Parameters of these models are mostly hard to interpret.
I Example: `2-norm of Aj,∗,∗ and Tj,∗,∗ in the feedforward

model correspond to the importance of history position j.
I Individual word embeddings can be clustered and dimensions

can be analyzed (e.g., Tsvetkov et al., 2015).

I Architectures are not especially intuitive.

I Impressive perplexity gains got people’s interest.
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Feedforward Networks

Like MLR, but more layers and harder to understand.
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Neural Networks for Sequences

A feedforward network is fine if our input is bounded in length and
we believe each position comprises its own features.

I That’s not really how language works, though; there’s nothing
special about (for example) “the word four positions back.”

I It also doesn’t scale to longer sequences well (consider
parameters specifically tied to the 974th word of a document).

I It also doesn’t capture the way words tend to combine locally
(e.g., with their neighbors) to form bigger meanings
(compositionality).

What follows are three families or styles of networks that reuse
parameters to encode sequences of arbitrary length.
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NLM v. 2: Convolutional Networks (Sliding Windows)

Consider the entire history for word t, h = 〈x1, x2, . . . , xt−1〉 (no
Markov assumption).

Start with X(0) =
[
mx1 ; mx2 ; . . . ; mxt−1

]
.

We will define a new matrix, X(`), at each layer of the network, by
applying a convolution function to the matrix X(`−1). The vector
X(`)[∗,m] can be considered a “hidden state” representation of
history word m at layer `.
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Convolution Layers

A convolution layer applies a feedforward-like “affine + nonlinear”
sliding window function across the input matrix, at each position.

X(1)[k,m] = f

bk +

d∑
i=1

w∑
j=1

C(k)[i, j] ·X(0)[i,m+ j − 1]



f is a nonlinearity (like tanh). w is the width of the sliding window.
Each k is a different “filter” and each m is a word position.

Hyperparameters: number of layers, and, at every layer, f , w,
number of filters
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Convolutional Network, Illustrated

embeddings, mxi

X(1)
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Convolutional Network, Illustrated

embeddings, mxi

X(1)

X(D)

convolution

convolutions

pooling

103 / 149



Convolutional Network: Pooling

Let the dimensionality of the last (Dth) layer be dout .

Pooling takes X(D) ∈ Rdout×(t−1) and maps it into Rdout .

Two standard options (with no additional parameters) are max
pooling,

zk = max
j

X(D)[k, j];

and average pooling,

zk =
1

t− 1

t−1∑
j=1

X(D)[k, j].

Finally, softmax(z) gives a probability distribution over outputs.

104 / 149



Reflection

Consider the computations required for encoding the history of
word xt and the history of word xt+1. Do you see a way to make
training efficient that wouldn’t have been available for the
feedforward NLM?
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Historical and Practical Notes

Convolutional neural networks originated in computer vision;
similar ideas emerged in speech recognition.

Seminal use of convolutional networks for text classification: Kim
(2014). Example use in language modeling: Dauphin et al. (2017).

Dilated convolutional networks use longer “strides” at deeper
levels, skipping over increasingly more of the words, allowing
effectively longer windows; see Yu and Koltun (2015) and
discussion in your textbook.
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Convolutional Networks

An import from computer vision, often touted for their speed.
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NLM v. 3: Recurrent Neural Network
Mikolov et al. (2010)

I Again, no Markov assumption; the history for word t is
h = 〈x1, x2, . . . , xt−1〉, mapped to 〈mx1 ,mx2 , . . . ,mxt−1〉.

I The history is encoded as a fixed-length “state” vector, st−1.

p(· | x1:(t−1)) = yt = softmax
(
s>t−1U

)
si = sigmoid

(
m>xiA + s>i−1B + c

)
s0 = 0

Note the recurrence.

The “depth” of the network corresponds to the position in the
sequence (here, t).
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Computation Graph: RNN
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Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to
propagate error into the distant past.

I State tends to change a lot on each iteration; the model
“forgets” too much.

Some variants:

I “Stacking” the functions to make deeper networks, feeding
the output of one in as the input to the next.

I Sundermeyer et al. (2012) use “long short-term memories”
(LSTMs, Hochreiter and Schmidhuber, 1997; see Olah, 2015)
and Cho et al. (2014) use “gated recurrent units” (GRUs) to
define the recurrence.
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Recurrent Networks

Established the dominance of neural models in NLP, strongest
option for many settings for several years.
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Taking Stock

Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network
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Taking Stock
Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network

None of these were designed specifically for language modeling,
though arguably they are increasingly “language savvy” in their
handling of sequences.

Also increasingly expensive.
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Taking Stock

Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network

The last model, v. 4, is called the “transformer” (Vaswani et al.,
2017).
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High-Level View of Transformer Language Models

The transformer was originally devised for machine translation, but
it’s also been used to build some “famous” language models like
GPT-3 (Brown et al., 2020).

The architecture is designed to exploit the specific parallelization
capabilities of GPU hardware.

Intuition: at each layer `, update the ith word’s vector by taking a
weighted average of other words’ vectors (in the last layer):

x
(`)
i =

∑
j

αi,jx
(`−1)
j

αi,∗ = softmax(polynomial( x
(`−1)
1 , . . . ,x(`−1)

n︸ ︷︷ ︸
previous layer’s output

))

Detailed walk-through of the original architecture can be found in
Rush (2018).
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Scaled Dot-Product Attention

At each layer, every word has a key, value, and query vector, with
lengths dk, dv, and dk.

We score how well a key k matches query q by:

q · k√
dk

Taking a softmax of scores across keys, we get the “attention”
that should be paid to each key k’s associated value, denoted αq,k.

Finally, we weight the values by their respective keys’ attention
values:

∑
i αq,ivi
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Attention Writ Large

Imagine we have a lot of queries; we can stack them into a matrix
Q. Similarly for keys K and values V. Think of attention as:

a(Q,K,V) = softmax

(
Q>K√
dk

)
V
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Attention Writ Large

Imagine we have a lot of queries; we can stack them into a matrix
Q. Similarly for keys K and values V. Think of attention as:

a(Q,K,V) = softmax

(
Q>K√
dk

)
V

Now imagine that we have a collection of separately-parameterized
attention functions (each with its own vectors for the queries, keys,
and values). These are called heads, and they operate in parallel;
the result is multi-head attention.

Think of multi-head attention as:

mha(Q,K,V) = concatenatehi=1

(
a(QWQ

i ,KWK
i ,VWV

i ))
)

WO
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Self-Attention

Though (multi-head) attention has been used in a variety of ways,
the one most relevant to use today is called self-attention.
The ith self-attention layer does the following:

I Create the keys, values, and queries by linearly transforming
the representation of the sequence from the previous layer,
X(i−1): Kj = UK

j X(i−1),Qj = UQ
j X(i−1),Vj = UV

j X(i−1)

(for each head j).

I Pass those through the multi-head self-attention layer to get
new representations of each word, X(i).
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Multiple Layers

Multi-head self-attention forms one layer; it takes vectors for words
and gives back new vectors for the same words.

It’s usually interleaved with feedforward layers that transform each
word’s vector locally (independent of other words).

At the very end, the vector at each position goes through a softmax
to get a distribution over the next word. For language modeling,
therefore, it’s critical that words only attend to preceding words!
This is accomplished during training by “masking out” future
words (if j > i, then each layer/head’s αi,j is forced to zero).
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Observation

Apart from masking to avoid cheating, the sequential nature of the
words is lost.

If you scramble the first i− 1 words, the distribution for word i will
be unchanged!

“Positional embeddings” are deterministic vector functions of a
word’s position that are added to mxi at the very start of
computation.
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Feedforward Redux

We ditched feedforward networks (v. 1) earlier, because they
assume fixed-width input.

Self-attention-based models actually tend to be used with a
max-length history, but it’s quite long (hundreds of words).

In some sense, this means self-attention networks are really just a
very wide kind of feedforward network!
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Transformer
Vaswani et al. (2017)

Designed to exploit resources (data, hardware), essentially
“feedforward” inside.
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Reflection

I said nothing special about how transformer LMs are trained.
Why not?
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Digestif I: “Pretraining” and “Finetuning”

I did not say much about word embeddings. In fact, there was
considerable work on word vectors independent of language
modeling. Some possibilities:

I I presented M as “just more parameters,” initialized randomly
and learned during NLM training.

I “Pretrain” M using a different algorithm, then plug them in
as fixed values. Train the other parameters.

I Use pretrained word embeddings as initial values and
“finetune” M during NLM training.
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Digestif I: “Pretraining” and “Finetuning”

I did not say much about word embeddings. In fact, there was
considerable work on word vectors independent of language
modeling. Some possibilities:

I I presented M as “just more parameters,” initialized randomly
and learned during NLM training.

I “Pretrain” M using a different algorithm, then plug them in
as fixed values. Train the other parameters.

I Use pretrained word embeddings as initial values and
“finetune” M during NLM training.

In 2018, there was a new twist: NLMs were used to create a new
kind of word embedding. Today, language model pretraining is
used almost everywhere in NLP.
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Digestif II: On Data

The pervasive attitude for many years: more data is better
(Church and Mercer, 1993).

The growth of the web, and then the social web, means it’s easier
to get more, and more diverse data. Today’s datasets are too large
to share.

The emergence of NLMs for generation (motivation III on slide 4)
has opened up new concerns about data quality, fairness, privacy,
and cultural biases that NLMs can learn (and then repeat); see
Gehman et al. (2020).
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Language Modeling Research in a Nutshell

a language model increase training data
(larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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Relative Frequency Estimation is the MLE
(Unigram Model)

Notation: 4V is the set of V -length, nonnegative vectors that sum
to one (proper distributions over V).
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Relative Frequency Estimation is the MLE
(Unigram Model)

The maximum likelihood estimation problem:

argmax
θ∈4V

p(x;θ)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Logarithm is a monotonic function.

argmax
θ∈4V

p(x;θ) = argmax
θ∈4V

log p(x;θ)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in the form of the unigram model.

argmax
θ∈4V

log p(x;θ) = argmax
θ∈4V

log

n∏
i=1

θxi
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Relative Frequency Estimation is the MLE
(Unigram Model)

Log of product equals sum of logs.

argmax
θ∈4V

log

n∏
i=1

θxi = argmax
θ∈4V

n∑
i=1

log θxi
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert from tokens to types.

argmax
θ∈4V

n∑
i=1

log θxi = argmax
θ∈4V

∑
v∈V

countx(v) log θv
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert to a minimization problem (for consistency with
textbooks).

argmax
θ∈4V

∑
v∈V

countx(v) log θv = argmin
θ∈4V

−
∑
v∈V

countx(v) log θv
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Relative Frequency Estimation is the MLE
(Unigram Model)

Lagrange multiplier to convert to a less constrained problem.

min
θ∈4V

−
∑
v∈V

countx(v) log θv

= max
µ≥0

min
θ∈RV

≥0

−
∑
v∈V

countx(v) log θv − µ

(
1−

∑
v∈V

θv

)

= min
θ∈RV

≥0

max
µ≥0
−
∑
v∈V

countx(v) log θv − µ

(
1−

∑
v∈V

θv

)

Intuitively, if
∑
v∈V

θv gets too big, µ will push toward +∞.

For more about Lagrange multipliers, see Dan Klein’s tutorial (reference at the end of

these slides).
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for θ∗ in terms of µ.

min
θ∈RV

≥0

max
µ≥0
−
∑
v∈V

countx(v) log θv − µ

(
1−

∑
v∈V

θv

)

fixing µ, for all v, set: 0 =
∂

∂θv

=
−countx(v)

θ∗v
+ µ

θ∗v =
countx(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for each θ∗v .

min
θ∈RV

≥0

max
µ≥0
−
∑
v∈V

countx(v) log θv − µ

(
1−

∑
v∈V

θv

)

= max
µ≥0
−
∑
v∈V

countx(v) log
countx(v)

µ
− µ

(
1−

∑
v∈V

countx(v)

µ

)

Remember: ∀v ∈ V, θ∗v =
countx(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Rearrange terms (a log a
b = a log a− a log b and remember

n =
∑
v∈V

countx(v)).

max
µ≥0
−
∑
v∈V

countx(v) log
countx(v)

µ
− µ

(
1−

∑
v∈V

countx(v)

µ

)
= max

µ≥0
−
∑
v∈V

countx(v) log countx(v) + n logµ− µ+ n

Remember: ∀v ∈ V, θ∗v =
countx(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for µ.

max
µ≥0
−
∑
v∈V

countx(v) log countx(v) + n logµ− µ+ n

set: 0 =
∂

∂µ

=
n

µ∗
− 1

µ∗ = n

Remember: ∀v ∈ V, θ∗v =
countx(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for µ.

max
µ≥0
−
∑
v∈V

countx(v) log countx(v) + n logµ− µ+ n

= −
∑
v∈V

countx(v) log countx(v) + n log n

∀v ∈ V, θ∗v =
countx(v)

µ
=

countx(v)

n

... and that’s the relative frequency estimate!
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Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

M

+ (n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv,
not just on the vectors of the history words.
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