
Natural Language Processing (CSE 517):
Linguistic Structure Prediction

Noah Smith
c© 2023

University of Washington
nasmith@cs.washington.edu

Winter 2023

Readings: Eisenstein (2019) 10 and 12 (11 and 13 suggested)

1 / 136

Motivation

As data, we tend to view natural language text as sequences (of
words, wordpieces, or characters, depending on the NLP
application).

But language obeys implicit rules of grammar, and it carries
meaning.

I It’s helpful to consider an analogy to programming languages,
which have syntax and semantics; well-formed programs can
be compiled and executed to carry out a task.

I Well-formed natural language strings can be understood by
others.

Computational models that analyze natural language syntax and
semantics typically map into structures like trees, graphs, and
more.

2 / 136

Big Abstraction: Linguistic Analysis

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.
I Some Y are very specialized, but others, like label sequences

we saw earlier, show up again and again.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I More robust: supervised learning from annotated data
I Today: unsupervised pretraining followed by supervised

finetuning

3 / 136

What Theories?

The field of linguistics offers a huge range of theories that can
inform our design of Y.

I Syntax: rules governing grammaticality or well-formedness of
strings, relative to a language

I Semantics: how the meaning of an utterance is constructed,
grounded in “the world” (or a proxy to the world)

I Pragmatics: the intended meaning by a speaker, in a given
social context

Each has many theories, and none of them is complete!

4 / 136

Theory: Constituents

5 / 136

Noun Phrases: Groups of Tokens that “Act Like” Nouns

What, exactly makes a noun phrase? Examples (Jurafsky and
Martin, forthcoming):

I Harry the Horse

I the Broadway coppers

I they

I a high-class spot such as Mindy’s

I the reason he comes into the Hot Box

I three parties from Brooklyn

6 / 136

Constituents

More general than noun phrases: constituents are groups of words
with certain (possible) behaviors.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and

in the morning

7 / 136

Constituents

More general than noun phrases: constituents are groups of words
with certain (possible) behaviors.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and

in the morning

8 / 136

Constituents

More general than noun phrases: constituents are groups of words
with certain (possible) behaviors.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and

in the morning

9 / 136

Constituents

More general than noun phrases: constituents are groups of words
with certain (possible) behaviors.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and

in the morning

10 / 136

Recursion and Constituents

this is the house

this is the house that Jack built

this is the cat that lives in the house that Jack built

this is the dog that chased the cat that lives in the house that Jack
built

this is the flea that bit the dog that chased the cat that lives in the
house the Jack built

this is the virus that infected the flea that bit the dog that chased
the cat that lives in the house that Jack built

11 / 136

Reflection

Can you think of some subsequences that are not constituents?

At the end of the slides, there’s a list of book titles that arguably
do not form constituents.

12 / 136

Toward a Theory

Take constituents to be the main building block of natural
language syntax, we can attempt to formalize what makes a string
grammatical in a language.

13 / 136

Context-Free Grammar

A context-free grammar consists of:
I A finite set of nonterminal symbols N (sometimes called

“categories”)
I A start symbol S ∈ N

I A finite alphabet Σ, called “terminal” symbols, distinct from
N

I Production rule set R, each of the form “N → α” where
I The lefthand side N is a nonterminal from N
I The righthand side α is a sequence of zero or more terminals

and/or nonterminals: α ∈ (N ∪ Σ)∗

I Special case: Chomsky normal form constrains α to be
either a single terminal symbol or two nonterminals

14 / 136

An Example CFG for a Tiny Bit of English
From Jurafsky and Martin (forthcoming)

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near
Nominal → Nominal Noun | through
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

15 / 136

“Lexicon”

This term is used in NLP to refer to an object that associates
information with words.

In a CFG, the “lexicon rules” are the rules that map a nonterminal
(usually a part of speech) to a single word.

(In an earlier lecture, we encountered WordNet, which is a
semantic lexicon.)

16 / 136

Example Phrase Structure Tree

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

The phrase-structure tree represents both the syntactic structure
of the sentence and the derivation of the sentence under the
grammar. E.g., VP

Verb NP

corresponds to the rule VP → Verb NP.

17 / 136

The First Phrase-Structure Tree
(Chomsky, 1956)

Sentence

NP

the man

VP

V

took

NP

the book

18 / 136

Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard
(Jurafsky and Martin, forthcoming, chapter 10).

I Need lots of categories to make sure all and only grammatical
sentences are included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual
grammar construction; these are often based on constraints
and a powerful algorithmic tool called unification.

19 / 136

Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard
(Jurafsky and Martin, forthcoming, chapter 10).

I Need lots of categories to make sure all and only grammatical
sentences are included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual
grammar construction; these are often based on constraints
and a powerful algorithmic tool called unification.

20 / 136

Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard
(Jurafsky and Martin, forthcoming, chapter 10).

I Need lots of categories to make sure all and only grammatical
sentences are included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual
grammar construction; these are often based on constraints
and a powerful algorithmic tool called unification.

21 / 136

Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard
(Jurafsky and Martin, forthcoming, chapter 10).

I Need lots of categories to make sure all and only grammatical
sentences are included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual
grammar construction; these are often based on constraints
and a powerful algorithmic tool called unification.

22 / 136

Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard
(Jurafsky and Martin, forthcoming, chapter 10).

I Need lots of categories to make sure all and only grammatical
sentences are included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual
grammar construction; these are often based on constraints
and a powerful algorithmic tool called unification.

A data-driven approach:

1. Build a corpus of annotated sentences, called a treebank.
(e.g., the Penn Treebank, Marcus et al., 1993.)

2. Extract rules from the treebank.

3. Optionally, use statistical models to generalize the rules.

23 / 136

Example from the Penn Treebank

S

NP-SBJ

NP

NNP

Pierre

NNP

Vinken

,

,

ADJP

NP

CD

61

NNS

years

JJ

old

,

,

VP

MD

will

VP

VB

join

NP

DT

the

NN

board

PP-CLR

IN

as

NP

DT

a

JJ

nonexecutive

NN

director

NP-TMP

NNP

Nov.

CD

29

24 / 136

LISP Encoding in the Penn Treebank

((S

(NP-SBJ-1

(NP (NNP Rudolph) (NNP Agnew))

(, ,)

(UCP

(ADJP

(NP (CD 55) (NNS years))

(JJ old))

(CC and)

(NP

(NP (JJ former) (NN chairman))

(PP (IN of)

(NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC)))))

(, ,))

(VP (VBD was)

(VP (VBN named)

(S

(NP-SBJ (-NONE- *-1))

(NP-PRD

(NP (DT a) (JJ nonexecutive) (NN director))

(PP (IN of)

(NP (DT this) (JJ British) (JJ industrial) (NN conglomerate)))))))

(. .)))

25 / 136

Some Penn Treebank Rules with Counts
40717 PP → IN NP
33803 S → NP-SBJ VP
22513 NP-SBJ → -NONE-
21877 NP → NP PP
20740 NP → DT NN
14153 S → NP-SBJ VP .
12922 VP → TO VP
11881 PP-LOC → IN NP
11467 NP-SBJ → PRP
11378 NP → -NONE-
11291 NP → NN
. . .
989 VP → VBG S
985 NP-SBJ → NN
983 PP-MNR → IN NP
983 NP-SBJ → DT
969 VP → VBN VP
. . .

100 VP → VBD PP-PRD
100 PRN → : NP :
100 NP → DT JJS
100 NP-CLR → NN
99 NP-SBJ-1 → DT NNP
98 VP → VBN NP PP-DIR
98 VP → VBD PP-TMP
98 PP-TMP → VBG NP
97 VP → VBD ADVP-TMP VP
. . .
10 WHNP-1 → WRB JJ
10 VP → VP CC VP PP-TMP
10 VP → VP CC VP
ADVP-MNR
10 VP → VBZ S , SBAR-ADV
10 VP → VBZ S ADVP-TMP

26 / 136

Penn Treebank Rules: Statistics

32,728 rules in the training section (not including 52,257 lexicon
rules)

4,021 rules in the development section

overlap: 3,128

27 / 136

(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,Σ,R) and a sentence x, the recognition
problem is:

Is x in the language of the CFG?

Related problem: parsing:

Show one or more derivations for x, using R.

28 / 136

(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,Σ,R) and a sentence x, the recognition
problem is:

Is x in the language of the CFG?

The proof is a derivation of x using the rules R.

Related problem: parsing:

Show one or more derivations for x, using R.

29 / 136

(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,Σ,R) and a sentence x, the recognition
problem is:

Is x in the language of the CFG?

The proof is a derivation of x using the rules R.

Related problem: parsing:

Show one or more derivations for x, using R.

With reasonable grammars, the number of parses is exponential in
|x|.

30 / 136

Syntactic Ambiguity

S

NP

I

VP

shot NP

an Nominal

Nominal

elephant

PP

in my pajamas

S

NP

I

VP

VP

shot NP

an Nominal

elephant

PP

in my pajamas

31 / 136

NLP Task: Parsing

32 / 136

Parser Evaluation

Represent a parse tree as a collection of tuples
〈〈`1, i1, j1〉, 〈`2, i2, j2〉, . . . , 〈`n, in, jn〉〉, where

I `k is the nonterminal labeling the kth phrase

I ik is the index of the first word in the kth phrase

I jk is the index of the last word in the kth phrase

Example:

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

−→
〈
〈S, 1, 6〉, 〈NP, 2, 3〉,
〈VP, 4, 6〉, 〈NP, 5, 6〉

〉

Convert gold-standard tree and system hypothesized tree into this
representation, then estimate precision, recall, and F1.

33 / 136

Tree Comparison Example

S

NP

I

VP

shot NP

an Nominal

Nominal

elephant

PP

in NP

my pajamas

S

NP

I

VP

VP

shot NP

an Nominal

elephant

PP

in NP

my pajamas

〈
〈NP, 3, 7〉,
〈Nominal, 4, 7〉

〉
︸ ︷︷ ︸

only in left tree

〈 〈NP, 1, 1〉
〈S, 1, 7〉, 〈VP, 2, 7〉,
〈PP, 5, 7〉, 〈NP, 6, 7〉
〈Nominal, 4, 4〉

〉
︸ ︷︷ ︸

in both trees

〈
〈VP, 2, 4〉,
〈NP, 3, 4〉

〉
︸ ︷︷ ︸
only in right tree

34 / 136

Two Views of Parsing

1. Incremental search: the state of the search is the partial
structure built so far; each action incrementally extends the
tree.

I Often greedy, with a statistical classifier deciding what action
to take in every state.

2. Discrete optimization: define a scoring function and seek the
tree with the highest score.

35 / 136

Two Views of Parsing

1. Incremental search: the state of the search is the partial
structure built so far; each action incrementally extends the
tree.

I Often greedy, with a statistical classifier deciding what action
to take in every state.

2. Discrete optimization: define a scoring function and seek the
tree with the highest score.

36 / 136

Two Views of Parsing

1. Incremental search: the state of the search is the partial
structure built so far; each action incrementally extends the
tree.
I Often greedy, with a statistical classifier deciding what action

to take in every state.

2. Discrete optimization: define a scoring function and seek the
tree with the highest score.

37 / 136

Two Views of Parsing

1. Incremental search: the state of the search is the partial
structure built so far; each action incrementally extends the
tree.
I Often greedy, with a statistical classifier deciding what action

to take in every state.

2. Discrete optimization: define a scoring function and seek the
tree with the highest score.

38 / 136

Probabilistic Context-Free Grammar

A probabilistic context-free grammar consists of:
I A finite set of nonterminal symbols N

I A start symbol S ∈ N
I A finite alphabet Σ, called “terminal” symbols, distinct from
N

I Production rule set R, each of the form “N → α” where
I The lefthand side N is a nonterminal from N
I The righthand side α is a sequence of zero or more terminals

and/or nonterminals: α ∈ (N ∪ Σ)∗

I Special case: Chomsky normal form constrains α to be
either a single terminal symbol or two nonterminals

I For each N ∈ N , a probability distribution over the rules
where N is the lefthand side, p(∗ | N).

39 / 136

PCFGs Score Trees

We can write the parsing problem as finding the best-scoring tree:

t̂ = argmax
t∈Tx

Score(t)

PCFGs view each tree t as a “bag of rules” (from R), and define:

Score(t) = p(t)

=
∏

(N→α)∈R

p(α | N)count(N→α;t)

40 / 136

PCFG Example

S

Write down the start symbol. Here: S

Probability:

1

41 / 136

PCFG Example

S

Aux NP VP

Choose a rule from the “S” distribution. Here: S → Aux NP VP

Probability:

p(Aux NP VP | S)

42 / 136

PCFG Example

S

Aux

does

NP VP

Choose a rule from the “Aux” distribution. Here: Aux → does

Probability:

p(Aux NP VP | S) · p(does | Aux)

43 / 136

PCFG Example

S

Aux

does

NP

Det Noun

VP

Choose a rule from the “NP” distribution. Here: NP → Det Noun

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP)

44 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

VP

Choose a rule from the “Det” distribution. Here: Det → this

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

45 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Choose a rule from the “Noun” distribution. Here: Noun → flight

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun)

46 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb NP

Choose a rule from the “VP” distribution. Here: VP → Verb NP

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP)

47 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Choose a rule from the “Verb” distribution. Here: Verb → include

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

48 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det Noun

Choose a rule from the “NP” distribution. Here: NP → Det Noun

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

· p(Det Noun | NP)

49 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

Choose a rule from the “Det” distribution. Here: Det → a
Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

· p(Det Noun | NP) · p(a | Det)

50 / 136

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

Choose a rule from the “Noun” distribution. Here: Noun → meal
Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

· p(Det Noun | NP) · p(a | Det) · p(meal | Noun)

51 / 136

Parsing with PCFGs

I How to set the probabilities p(righthand side | lefthand side)?

I How to decode/parse?

52 / 136

Probabilistic CKY
(Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967)

Input:

I a PCFG (N , S,Σ,R, p(∗ | ∗)), in Chomsky normal form

I a sentence x (let n be its length)

Output: If x is in the language of the grammar.

argmax
t∈Tx

log p(t);

undefined if not.

53 / 136

Notation

Probabilistic CKY is closely related to the Viterbi algorithm; it is a
dynamic programming algorithm.
The recurrence is defined around

♥i:j(N),

which will store the best score (log probability) found (so far) for
constructing an N -rooted constituent that spans 〈xi, . . . , xj〉.

In Viterbi, we used conditional independence to collapse all prefix
label sequences that ended in the same label into one stored item;
here we collapse all trees spanning words i to j with the same root
into a single item.

54 / 136

Probabilistic CKY

Base case: for i ∈ {1, . . . , n} and for each N ∈ N :

♥i:i(N) = log p(xi | N)

For each i, k such that 1 ≤ i < k ≤ n and each N ∈ N :

♥i:k(N) = max
L,R∈N ,j∈{i,...,k−1}

log p(L R | N) +♥i:j(L) +♥(j+1):k(R)

N

L

xi . . . xj

R

xj+1 . . . xk

Solution:

♥1:n(S) = max
t∈Tx

log p(t)

55 / 136

Parse Chart

x1

x2

x3

x4

x5

56 / 136

Parse Chart

♥1:1(∗)

x1 ♥2:2(∗)

x2 ♥3:3(∗)

x3 ♥4:4(∗)

x4 ♥5:5(∗)

x5

57 / 136

Parse Chart

♥1:1(∗) ♥1:2(∗)

x1 ♥2:2(∗) ♥2:3(∗)

x2 ♥3:3(∗) ♥3:4(∗)

x3 ♥4:4(∗) ♥4:5(∗)

x4 ♥5:5(∗)

x5

58 / 136

Parse Chart

♥1:1(∗) ♥1:2(∗) ♥1:3(∗)

x1 ♥2:2(∗) ♥2:3(∗) ♥2:4(∗)

x2 ♥3:3(∗) ♥3:4(∗) ♥3:5(∗)

x3 ♥4:4(∗) ♥4:5(∗)

x4 ♥5:5(∗)

x5

59 / 136

Parse Chart

♥1:1(∗) ♥1:2(∗) ♥1:3(∗) ♥1:4(∗)

x1 ♥2:2(∗) ♥2:3(∗) ♥2:4(∗) ♥2:5(∗)

x2 ♥3:3(∗) ♥3:4(∗) ♥3:5(∗)

x3 ♥4:4(∗) ♥4:5(∗)

x4 ♥5:5(∗)

x5

60 / 136

Parse Chart

♥1:1(∗) ♥1:2(∗) ♥1:3(∗) ♥1:4(∗) ♥1:5(∗)

x1 ♥2:2(∗) ♥2:3(∗) ♥2:4(∗) ♥2:5(∗)

x2 ♥3:3(∗) ♥3:4(∗) ♥3:5(∗)

x3 ♥4:4(∗) ♥4:5(∗)

x4 ♥5:5(∗)

x5

61 / 136

Remarks

I Space and runtime requirements?

I Recovering the best tree?

I Probabilistic Earley’s algorithm does not require the grammar
to be in Chomsky normal form.

I Analogous to (neural) CRFs for sequence labeling, modern
practice replaces the log-probabilities with s(x, i, j,N), built
out of a neural network with word vectors at the bottom (e.g.,
Stern et al., 2017).

62 / 136

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3)
runtime.

I Recovering the best tree?

I Probabilistic Earley’s algorithm does not require the grammar
to be in Chomsky normal form.

I Analogous to (neural) CRFs for sequence labeling, modern
practice replaces the log-probabilities with s(x, i, j,N), built
out of a neural network with word vectors at the bottom (e.g.,
Stern et al., 2017).

63 / 136

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3)
runtime.

I Recovering the best tree?

I Probabilistic Earley’s algorithm does not require the grammar
to be in Chomsky normal form.

I Analogous to (neural) CRFs for sequence labeling, modern
practice replaces the log-probabilities with s(x, i, j,N), built
out of a neural network with word vectors at the bottom (e.g.,
Stern et al., 2017).

64 / 136

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3)
runtime.

I Recovering the best tree? Backpointers.

I Probabilistic Earley’s algorithm does not require the grammar
to be in Chomsky normal form.

I Analogous to (neural) CRFs for sequence labeling, modern
practice replaces the log-probabilities with s(x, i, j,N), built
out of a neural network with word vectors at the bottom (e.g.,
Stern et al., 2017).

65 / 136

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3)
runtime.

I Recovering the best tree? Backpointers.

I Probabilistic Earley’s algorithm does not require the grammar
to be in Chomsky normal form.

I Analogous to (neural) CRFs for sequence labeling, modern
practice replaces the log-probabilities with s(x, i, j,N), built
out of a neural network with word vectors at the bottom (e.g.,
Stern et al., 2017).

66 / 136

Demo of Recent State of the Art

https://demo.allennlp.org/constituency-parsing

67 / 136

https://demo.allennlp.org/constituency-parsing

Beyond PCFGs

The “bag of rules” assumption in our scoring function is very
limiting.

I Making the rules “second-order,” e.g.,
p(α | Parent ,Grandparent) has a huge benefit (Johnson,
1998)

I “Decorating” the trees in various ways, e.g., with lexical
“heads” that relate a each category back to the most
important word in its yield

I Recurrent neural network grammars: encode the entire history
of derivation steps in a vector (Dyer et al., 2016)

I Many richer syntactic formalisms from (computational)
linguistics, as well, venturing into (mild) context-sensitivity
and beyond!

68 / 136

Alternatives

A different family of theories of syntax focuses on dependencies
between words, so that parse trees are directed graphs over
word-vertices (Tesnière, 1959; Mel’čuk, 1987). Dependency parsing
is largely based on directed spanning tree algorithms (McDonald
et al., 2005).

Dependency syntax has, arguably, a stronger tradition of
application across a more diverse set of languages. The Universal
Dependencies project (https://universaldependencies.org),
for example, includes treebanks in over 100 languages.

69 / 136

https://universaldependencies.org

Switching Gears: Semantics

70 / 136

Toward Semantics

Semantics is about formally capturing (some of) what a piece of
text means.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is
true, or answer a question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

71 / 136

Toward Semantics

Semantics is about formally capturing (some of) what a piece of
text means.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is
true, or answer a question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

72 / 136

Toward Semantics

Semantics is about formally capturing (some of) what a piece of
text means.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is
true, or answer a question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

73 / 136

Toward Semantics

Semantics is about formally capturing (some of) what a piece of
text means.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is
true, or answer a question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

74 / 136

Toward Semantics

Semantics is about formally capturing (some of) what a piece of
text means.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is
true, or answer a question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

75 / 136

Toward Semantics

Semantics is about formally capturing (some of) what a piece of
text means.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is
true, or answer a question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

Eventually (but not today):

I deal with non-literal meanings

I expressiveness across a wide range of subject matter

76 / 136

First Steps

Today we’ll create a computational model of a tiny world and use
first-order logic as our meaning representation language.

77 / 136

A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage,
Din Tai Fung, Banana Leaf, American, Chinese, Thai

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy;
Adrian, Brook, and Chris are human

I Relations: Schultzy’s serves American, Din Tai Fung serves
Chinese, and Banana Leaf serves Thai

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?

78 / 136

A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage,
Din Tai Fung, Banana Leaf, American, Chinese, Thai
a, b, c, d, ss, dtf , bl , am, ch, th

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy;
Adrian, Brook, and Chris are human
Longwait = {dtf },Noisy = {ss},Human = {a, b, c}

I Relations: Schultzy’s serves American, Din Tai Fung serves
Chinese, and Banana Leaf serves Thai
Serves = {(ss, am), (dtf , ch), (bl , th)},Likes =
{(a, ss), (a, dtf), . . .}

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?

79 / 136

A Quick Tour of First-Order Logic

I Term: a constant (ss) or a variable
I Formula: defined inductively . . .

I If R is an n-ary relation and t1, . . . , tn are terms, then
R(t1, . . . , tn) is a formula.

I If φ is a formula, then its negation, ¬φ, is a formula.
I If φ and ψ are formulas, then binary logical connectives can be

used to create formulas:
I φ ∧ ψ
I φ ∨ ψ
I φ⇒ ψ

I If φ is a formula and v is a variable, then quantifiers can be
used to create formulas:

I Universal quantifier: ∀v, φ
I Existential quantifier: ∃v, φ

Note: Leaving out functions, because we don’t need them in a
single lecture on FOL for NL.

80 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud

2. Some human likes Chinese

3. If a person likes Thai, then they aren’t friends with Donald

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))

5. ∀x, ∃y,¬Likes(x, y)

6. ∃y,∀x,¬Likes(x, y)

81 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)

2. Some human likes Chinese

3. If a person likes Thai, then they aren’t friends with Donald

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))

5. ∀x, ∃y,¬Likes(x, y)

6. ∃y,∀x,¬Likes(x, y)

82 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)

2. Some human likes Chinese ∃x,Human(x) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))

5. ∀x,∃y,¬Likes(x, y)

6. ∃y,∀x,¬Likes(x, y)

83 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)

2. Some human likes Chinese ∃x,Human(x) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x) ∧ Likes(x, th)⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))

5. ∀x,∃y,¬Likes(x, y)

6. ∃y,∀x,¬Likes(x, y)

84 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)

2. Some human likes Chinese ∃x,Human(x) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x) ∧ Likes(x, th)⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)

6. ∃y,∀x,¬Likes(x, y)

85 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)

2. Some human likes Chinese ∃x,Human(x) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x) ∧ Likes(x, th)⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)
Everybody has something they don’t like.

6. ∃y,∀x,¬Likes(x, y)

86 / 136

Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)

2. Some human likes Chinese ∃x,Human(x) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x) ∧ Likes(x, th)⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)
Everybody has something they don’t like.

6. ∃y,∀x,¬Likes(x, y)
There exists something that nobody likes.

87 / 136

Logical Semantics
(Montague, 1970)

The denotation of a NL sentence is the set of conditions that must
hold in the (model) world for the sentence to be true.

Every restaurant has a long wait or Adrian doesn’t like it.

is true if and only if

∀x,Restaurant(x)⇒ (Longwait(x) ∨ ¬Likes(a, x))

is true.

This is sometimes called the logical form of the NL sentence.

88 / 136

The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its
sub-phrases.

89 / 136

The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its
sub-phrases.

I.e., semantics is derived from syntax.

90 / 136

The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its
sub-phrases.

I.e., semantics is derived from syntax.

We need a way to express semantics of phrases, and compose them
together!

91 / 136

λ-Calculus

(Much more powerful than what we’ll see today; ask your PL
professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a
λ-term, meaning: an unnamed function from values (of v) to
formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then
[λv.φ](ψ) is a formula.
I It can be reduced by substituting ψ in for every instance of v

in φ.

92 / 136

λ-Calculus

(Much more powerful than what we’ll see today; ask your PL
professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a
λ-term, meaning: an unnamed function from values (of v) to
formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then
[λv.φ](ψ) is a formula.
I It can be reduced by substituting ψ in for every instance of v

in φ.

Example:
λx.Likes(x, dtf) maps things to statements that they like Din Tai
Fung

93 / 136

λ-Calculus

(Much more powerful than what we’ll see today; ask your PL
professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a
λ-term, meaning: an unnamed function from values (of v) to
formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then
[λv.φ](ψ) is a formula.
I It can be reduced by substituting ψ in for every instance of v

in φ.

Example:
[λx.Likes(x, dtf)](c) reduces to Likes(c, dtf)

94 / 136

λ-Calculus

(Much more powerful than what we’ll see today; ask your PL
professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a
λ-term, meaning: an unnamed function from values (of v) to
formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then
[λv.φ](ψ) is a formula.
I It can be reduced by substituting ψ in for every instance of v

in φ.

Example:
λx.λy.Friends(x, y) maps things x to maps of things y to
statements that x and y are friends

95 / 136

λ-Calculus

(Much more powerful than what we’ll see today; ask your PL
professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a
λ-term, meaning: an unnamed function from values (of v) to
formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then
[λv.φ](ψ) is a formula.
I It can be reduced by substituting ψ in for every instance of v

in φ.

Example:
[λx.λy.Friends(x, y)](b) reduces to λy.Friends(b, y)

96 / 136

λ-Calculus

(Much more powerful than what we’ll see today; ask your PL
professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a
λ-term, meaning: an unnamed function from values (of v) to
formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then
[λv.φ](ψ) is a formula.
I It can be reduced by substituting ψ in for every instance of v

in φ.

Example:
[[λx.λy.Friends(x, y)](b)](a) reduces to [λy.Friends(b, y)](a),
which reduces to Friends(b, a)

97 / 136

Semantic Attachments to CFG

I NNP → Adrian {a}
I VBZ → likes {λf.λy.∀xf(x)⇒ Likes(y, x)}
I JJ → expensive {λx.Expensive(x)}
I NNS → restaurants {λx.Restaurant(x)}
I NP → NNP {NNP.sem}
I NP → JJ NNS {λx.JJ.sem(x) ∧ NNS.sem(x)}
I VP → VBZ NP {VBZ.sem(NP.sem)}
I S → NP VP {VP.sem(NP.sem)}

98 / 136

Example

S

NP

NNP

Adrian

VP

VBZ

likes

NP

JJ

expensive

NNS

restaurants

99 / 136

Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.JJ.sem(v) ∧ NNS.sem(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants

100 / 136

Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants

λv.

λz.Expensive(z)︸ ︷︷ ︸
JJ.sem

 (v) ∧

λw.Restaurant(w)︸ ︷︷ ︸
NNS.sem

 (v)

101 / 136

Example

...

VP : VBZ.sem(NP.sem)

VBZ : λf.λy.∀xf(x)⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurants

102 / 136

Example

...

VP : λy.∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(y, x)

VBZ : λf.λy.∀xf(x)⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurantsλf.λy.∀xf(x)⇒ Likes(y, x)︸ ︷︷ ︸
VBZ.sem

λv.Expensive(v) ∧ Restaurant(v)︸ ︷︷ ︸
NP.sem

λy.∀x [λv.Expensive(v) ∧ Restaurant(v)] (x)⇒ Likes(y, x)

λy.∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(y, x)

103 / 136

Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(y, x)

likes expensive restaurants

104 / 136

Example

S : VP.sem(NP.sem)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(y, x)

likes expensive restaurants

105 / 136

Example

S : ∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(a, x)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(y, x)

likes expensive restaurants

λy.∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(y, x)︸ ︷︷ ︸
VP.sem

 a︸︷︷︸
NP.sem

∀x,Expensive(x) ∧ Restaurant(x)⇒ Likes(a, x)

106 / 136

Reflection

There are plenty of counter-examples to the idea that natural
language meaning is entirely compositional. Can you think of
some? Can you think of a way to account for noncompositional
elements within the CFG-with-semantic-attachments framework?

107 / 136

The Main Dish

108 / 136

Combinatory Categorial Grammar
(Steedman, 2000)

CCG is a grammatical formalism that is well-suited for tying
together syntax and semantics.

Formally, it is more powerful than CFG—it can represent some of
the context-sensitive languages (which we do not have time to
define formally).

109 / 136

CCG Types

Instead of the “N” of CFGs, CCGs can have an infinitely large set
of structured categories (called types).

I Primitive types: typically S, NP, N, and maybe more
I Complex types, built with “slashes,” for example:

I S/NP is “an S, except that it lacks an NP to the right”
I S\NP is “an S, except that it lacks an NP to its left”
I (S\NP)/NP is “an S, except that it lacks an NP to its right,

and its left”

You can think of complex types as functions, e.g., S/NP maps NPs
to Ss.

110 / 136

CCG Combinators

Instead of the production rules of CFGs, CCGs have a very small
set of generic combinators that tell us how we can put types
together.

Convention writes the rule differently from CFG: “X Y ⇒ Z”
means that X and Y combine to form a Z (the “parent” in the
tree).

111 / 136

Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

112 / 136

Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

dog

113 / 136

Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

N/N

yellow

N

dog

114 / 136

Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

bit

NP

John

115 / 136

Conjunction Combinator

X and X ⇒ X

NP

NP

cats

and NP

dogs

116 / 136

Conjunction Combinator

X and X ⇒ X

S

NP

John

S\NP

S\NP

(S\NP)/NP

ate

NP

anchovies

and S\NP

(S\NP)/NP

drank

NP

beer

117 / 136

Conjunction Combinator

X and X ⇒ X

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

(S\NP)/NP

bit

and (S\NP)/NP

infected

NP

John

118 / 136

Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward
(Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/NP

(S\NP)/(S\NP)

would

(S\NP)/NP

prefer

NP

olives

119 / 136

Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward
(Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/(S\NP)

would

S \NP

(S\NP)/NP

prefer

NP

olives

120 / 136

Type-Raising Combinator
Forward (X ⇒ Y/(Y \X)) and backward (X ⇒ Y \(Y/X))

S

S/NP

S/NP

S/(S\NP)

NP

I

(S\NP)/NP

love

and S/NP

S/(S\NP)

NP

Karen

(S\NP)/NP

hates

NP

chocolate

121 / 136

Back to Semantics

Each combinator also tells us what to do with the semantic
attachments.

I Forward application: X/Y : f Y : g ⇒ X : f(g)

I Forward composition:
X/Y : f Y/Z : g ⇒ X/Z : λx.f(g(x))

I Forward type-raising: X : g ⇒ Y/(Y \X) : λf.f(g)

122 / 136

CCG Lexicon

Most of the work is done in the lexicon!

Syntactic and semantic information is much more formal here.

I Slash categories define where all the syntactic arguments are
expected to be

I λ-expressions define how the expected arguments get “used”
to build up a FOL expression

Extensive discussion: Carpenter (1997). Again, this is one theory
out of many!

123 / 136

Semantic Parsing

Semantic parsing comprises a wide range of tasks where strings are
mapped into meaning representation languages. Examples:

I Programming languages, especially query languages that can
be used to answer questions using a database (Zettlemoyer
and Collins, 2005, e.g.,)

I Schemas designed around real-world event-types (called
“frames”); trying to extract “who did what to whom?”
(Baker et al., 1998; Palmer et al., 2005)

These tasks have inspired a rich literature on learning for semantic
parsing, which builds heavily on the techniques we’ve covered in
this class and frequently goes beyond supervised learning (e.g.,
maybe we observe text inputs and semantic outputs, but no syntax
that links them). Kamath and Das (2019) gives a survey.

124 / 136

Stepping Back: Linguistic Structure Prediction

Beyond syntactic and semantic parsing, people have applied similar
ideas to:

I Coreference resolution (chapter 15)

I Discourse parsing (chapter 16)

I Extractive summarization

I Machine translation

Smith (2011) gives a general, abstract framework for thinking
about these problems that predates (but combines nicely with)
neural models.

125 / 136

Warning

Relative to other problems we have studied in this class, the tasks
we discussed today have very little training data to provide
supervision. Consider:

I Whose language was considered when the grammar was built,
the annotation conventions were defined, and the data was
selected?

I How will accuracy be affected when a parser is applied to
someone else’s data?

Longstanding research question: how well can linguistic structure
be automatically discovered with little (or no) supervision?

126 / 136

Closing Discussion

Why does linguistic structure matter today?

I If NLP is a tool for the scientific study of language, then
developing models and algorithms can advance and test
computational theories of language.

I If NLP is a tool for the scientific study of models, then
linguistic theories tell us what properties/behaviors we should
look for.

I Linguistic structure is a tool for interpretability.

I Theories of syntax and semantics can be used to impose
inductive bias on learning procedures, reducing cost.

127 / 136

Closing Discussion

Why does linguistic structure matter today?

I If NLP is a tool for the scientific study of language, then
developing models and algorithms can advance and test
computational theories of language.

I If NLP is a tool for the scientific study of models, then
linguistic theories tell us what properties/behaviors we should
look for.

I Linguistic structure is a tool for interpretability.

I Theories of syntax and semantics can be used to impose
inductive bias on learning procedures, reducing cost.

128 / 136

Closing Discussion

Why does linguistic structure matter today?

I If NLP is a tool for the scientific study of language, then
developing models and algorithms can advance and test
computational theories of language.

I If NLP is a tool for the scientific study of models, then
linguistic theories tell us what properties/behaviors we should
look for.

I Linguistic structure is a tool for interpretability.

I Theories of syntax and semantics can be used to impose
inductive bias on learning procedures, reducing cost.

129 / 136

Closing Discussion

Why does linguistic structure matter today?

I If NLP is a tool for the scientific study of language, then
developing models and algorithms can advance and test
computational theories of language.

I If NLP is a tool for the scientific study of models, then
linguistic theories tell us what properties/behaviors we should
look for.

I Linguistic structure is a tool for interpretability.

I Theories of syntax and semantics can be used to impose
inductive bias on learning procedures, reducing cost.

130 / 136

Closing Discussion

Why does linguistic structure matter today?

I If NLP is a tool for the scientific study of language, then
developing models and algorithms can advance and test
computational theories of language.

I If NLP is a tool for the scientific study of models, then
linguistic theories tell us what properties/behaviors we should
look for.

I Linguistic structure is a tool for interpretability.

I Theories of syntax and semantics can be used to impose
inductive bias on learning procedures, reducing cost.

131 / 136

References I

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet
project. In Proc. of ACL-COLING, 1998.

Bob Carpenter. Type-logical semantics. MIT Press, 1997.

Noam Chomsky. Three models for the description of language. Information Theory,
IEEE Transactions on, 2(3):113–124, 1956.

John Cocke and Jacob T. Schwartz. Programming languages and their compilers:
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences,
New York University, 1970.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent
neural network grammars. In Proc. of NAACL, 2016.

Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019.

Mark Johnson. PCFG models of linguistic tree representations. Computational
Linguistics, 24(4):613–32, 1998.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall, third edition, forthcoming. URL
https://web.stanford.edu/~jurafsky/slp3/.

Aishwarya Kamath and Rajarshi Das. A survey on semantic parsing. In Proc. of
AKBC, 2019.

132 / 136

https://web.stanford.edu/~jurafsky/slp3/

References II
Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free

languages. Technical Report AFCRL-65-758, Air Force Cambridge Research Lab,
1965.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of English: the Penn treebank. Computational Linguistics, 19(2):
313–330, 1993.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of
HLT-EMNLP, 2005. URL
http://www.aclweb.org/anthology/H/H05/H05-1066.pdf.

Igor A. Mel’čuk. Dependency Syntax: Theory and Practice. State University Press of
New York, 1987.

Richard Montague. Universal grammar. Theoria, 36:373–398, 1970.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. The Proposition Bank: An
annotated corpus of semantic roles. Computational Linguistics, 31(1):71–105, 2005.

Geoffrey K. Pullum. The Great Eskimo Vocabulary Hoax and Other Irreverent Essays
on the Study of Language. University of Chicago Press, 1991.

Noah A. Smith. Linguistic Structure Prediction. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, 2011. URL http://www.

morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf.

Mark Steedman. The Syntactic Process. MIT Press, 2000.

133 / 136

http://www.aclweb.org/anthology/H/H05/H05-1066.pdf
http://www.morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf
http://www.morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf

References III

Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal span-based neural
constituency parser. In Proc. of ACL, 2017.

L. Tesnière. Éléments de Syntaxe Structurale. Klincksieck, 1959.

Daniel H. Younger. Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2), 1967.

Luke Zettlemoyer and Michael Collins. Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. In Proc. of UAI,
2005.

134 / 136

Extras

135 / 136

Not Constituents
(Pullum, 1991)

I If on a Winter’s Night a Traveler (by Italo Calvino)

I Nuclear and Radiochemistry (by Gerhart Friedlander et al.)

I The Fire Next Time (by James Baldwin)

I A Tad Overweight, but Violet Eyes to Die For (by
G.B. Trudeau)

I Sometimes a Great Notion (by Ken Kesey)

I [how can we know the] Dancer from the Dance (by Andrew
Holleran)

136 / 136

	References

