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Machine Translation

The driving application motivating this lecture is automatic
translation between natural languages, known as “machine
translation” (MT).

The sequence-to-sequence (sometimes abbreviated “seq2seq”)
family of approaches was developed for MT, and we’ll focus on
that use case.

Today, it’s applied to many problems in NLP. Out of the box, it’s
usually not the best thing you can do, but it’s an easy starting
point.
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MT Evaluation

Intuition: good translations are fluent in the target language and
faithful to the original meaning.

Bleu score (Papineni et al., 2002):

I Compare to a human-generated reference translation

I Or, better: multiple references

I Weighted average of n-gram precision (across different n)

There are some alternatives; most papers that use them report
Bleu, too.

Better: human evaluations that compare output to reference.

3 / 89



Warren Weaver to Norbert Wiener, 1947

One naturally wonders if the problem of translation could be
conceivably treated as a problem in cryptography. When I look at
an article in Russian, I say: ‘This is really written in English, but it
has been coded in some strange symbols. I will now proceed to
decode.’
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Aperitif: Noisy Channel Models
A pattern for modeling a pair of random variables, X and Y :

source −→ Y −→ channel −→ X

I Y is the plaintext, the true message, the missing information,
the output

I X is the ciphertext, the garbled message, the observable
evidence, the input

I Decoding: select y given X = x.

y∗ = argmax
y

p(y | x)

= argmax
y

p(x | y) · p(y)
p(x)

= argmax
y

p(x | y)︸ ︷︷ ︸
channel model

· p(y)︸︷︷︸
source model
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Review from LM lecture: Speech Recognition

Successful speech recognition requires generating a word sequence
that is:

I Faithful to the acoustic input

I Fluent

If we’re mapping acoustics a to word sequences w, then:

w∗ = argmax
w

Faithfulness(w;a) + Fluency(w)

Language models can provide a “fluency” score.
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Review from LM lecture: Speech Recognition

Successful speech recognition requires generating a word sequence
that is:

I Faithful to the acoustic input

I Fluent

If we’re mapping acoustics a to word sequences w, then:

w∗ = argmax
w

Faithfulness(w;a) + Fluency(w)

= argmax
w

log p(a | w)︸ ︷︷ ︸
channel model

+ log p(w)︸ ︷︷ ︸
source model

Language models can provide a “fluency” score.
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Bitext/Parallel Text

Let f and e be two sequences in French and English, respectively.

If we have enough such examples, we could estimate a conditional
distribution p(F | E), known as the translation model.

In a noisy channel machine translation system, we could use this
together with source/language model p(E) to “decode” f into an
English translation.
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Reflection

Where might we find parallel data?
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IBM Model 1
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .
Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `}
(positions in e).
I a4 = 3 means that f4 is “aligned” to e3.
I a6 = 0 means that f6 is “aligned” to a special null symbol,
e0.

p(f | e,m;θ) =
∑̀
a1=0

∑̀
a2=0

· · ·
∑̀
am=0

p(f ,a | e,m;θ)

=
∑

a∈{0,...,`}m
p(f ,a | e,m;θ)

p(f ,a | e,m;θ) =

m∏
i=1

p(ai | i, `,m) · p(fi | eai ;θ)

=

m∏
i=1

1

`+ 1
· θfi|eai =

(
1

`+ 1

)m m∏
i=1

θfi|eai
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, . . .〉

p(f ,a | e,m;θ) =
1

17 + 1
· θNoahs|Noah’s
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, . . .〉

p(f ,a | e,m;θ) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark
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Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, . . .〉

p(f ,a | e,m;θ) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, . . .〉

p(f ,a | e,m;θ) =
1
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· 1
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, . . .〉

p(f ,a | e,m;θ) =
1
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, ?, . . .〉

p(f ,a | e,m;θ) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
· θnicht|not

· 1

17 + 1
· θvoller|filled ·

1

17 + 1
· θProductionsfactoren|?
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, ?, . . .〉

p(f ,a | e,m;θ) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
· θnicht|not

· 1

17 + 1
· θvoller|filled ·

1

17 + 1
· θProductionsfactoren|?

Problem: This alignment isn’t possible with IBM model 1! Each
fi is aligned to at most one eai!
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null

21 / 89



Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, 5, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war

· 1

10 + 1
· θfilled|voller
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, 5, 4, . . .〉

p(f ,a | e,m;θ) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war

· 1

10 + 1
· θfilled|voller ·

1

10 + 1
· θnot|nicht
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Reflection

This is a problem of incomplete data: at training time, we see e
and f , but not a. Have we seen anything like this before?

28 / 89



Expectation Maximization
Review from vector embeddings lecture!

Many ways to understand it. Today, we’ll stick with a simple one.

Start with arbitrary (e.g., random) parameter values. Alternate
between two steps:

I E step: calculate the posterior distribution over each word’s
assignment to an other-language word (today) or a topic (in
PLSA).

I M step: treat the posteriors as soft counts, and re-estimate
the model.

Doing this is a kind of hill-climbing on the likelihood of the
observed data.
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“Complete Data” IBM Model 1

Let the training data consist of N word-aligned sentence pairs:

〈e(1)1 ,f (1),a(1)〉, . . . , 〈e(N),f (N),a(N)〉.
Define:

qn,i(j) =

{
1 if a

(n)
i = j

0 otherwise

Maximum likelihood estimate for θf |e:

θ̂f |e =
count(e, f)

count(e)
=

N∑
n=1

∑
i:f

(n)
i =f

∑
j:e

(n)
j =e

qn,i(j)

N∑
n=1

m(n)∑
i=1

∑
j:e

(n)
j =e

qn,i(j)
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MLE with “Soft” Counts for IBM Model 1

Let the training data consist of N “softly” aligned sentence pairs,

〈e(1)1 ,f (1), 〉, . . . , 〈e(N),f (N)〉.

Now, let qn,i(j) be “soft,” interpreted as:

qn,i(j) = p(a
(n)
i = j;θ)

Maximum likelihood estimate for θf |e:

θ̂f |e =

N∑
n=1

∑
i:f

(n)
i =f

∑
j:e

(n)
j =e

qn,i(j)

N∑
n=1

m(n)∑
i=1

∑
j:e

(n)
j =e

qn,i(j)
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Expectation Maximization Algorithm for IBM Model 1

1. Initialize θ to some arbitrary values.

2. E step: use current θ to estimate expected (“soft”) counts.

qn,i(j)← θ
f
(n)
i |e(n)

j

/
`(n)∑
j′=1

θ
f
(n)
i |e(n)

j′

3. M step: carry out “soft” MLE.

θ̂f |e ←

N∑
n=1

∑
i:f

(n)
i =f

∑
j:e

(n)
j =e

qn,i(j)

N∑
n=1

m(n)∑
i=1

∑
j:e

(n)
j =e

qn,i(j)

4. Go to 2 until converged.
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Expectation Maximization

I Originally introduced in the 1960s for estimating HMMs when
the states really are “hidden.”

I Can be applied to any generative model with hidden variables
(we saw it for PLSA earlier in the class).

I Greedily attempts to maximize probability of the observable
data, marginalizing over latent variables. For IBM model 1,
that means:

max
θ

N∏
n=1

p(f (n) | e(n);θ) = max
θ

N∏
n=1

∑
a

p(f (n),a | e(n);θ)

I Usually converges only to a local optimum of the above,
which is in general not convex.

I Strangely, for IBM model 1 (and very few other models), it is
convex!
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IBM Model 2
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .

Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `}
(positions in e).

I E.g., a4 = 3 means that f4 is “aligned” to e3.

p(f | e,m;θ) =
∑

a∈{0,...,n}m
p(f ,a | e,m;θ)

p(f ,a | e,m;θ) =

m∏
i=1

p(ai | i, `,m;θ) · p(fi | eai ;θ)

= θdistortion
ai|i,`,m · θtranslation

fi|eai

34 / 89



Variations

I Dyer et al. (2013) introduced a new parameterization:

θdistortion
j|i,`,m ∝ exp−λ

∣∣∣∣ im − j

`

∣∣∣∣
(This is called fast align.)

I IBM models 3–5 (Brown et al., 1993) introduced increasingly
more powerful ideas, such as “fertility” and “distortion.”
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Some History

Obstacles for noisy channel MT:

I Proprietary implementation; open-source implementation of
IBM model didn’t come until 1999 (Al-Onaizan et al., 1999)!

I No decoding algorithm was offered; even for simple models
exact decoding is NP-complete (Knight, 1999).

I No automatic evaluation until the Bleu score (Papineni et al.,
2002).
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Some History

Obstacles for noisy channel MT:

I Proprietary implementation; open-source implementation of
IBM model didn’t come until 1999 (Al-Onaizan et al., 1999)!

I No decoding algorithm was offered; even for simple models
exact decoding is NP-complete (Knight, 1999).

I No automatic evaluation until the Bleu score (Papineni et al.,
2002).

By the early 2000s, it was becoming clear that modeling
translation “word-by-word” was missing out on powerful contextual
cues. There were two solutions in friendly competition:

I Phrase-based translation: work with chunks of words instead
of words.

I Syntax-based translation: use parse trees of input, output, or
both.
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From Alignment to (Phrase-Based) Translation

Obtaining word alignments in a parallel corpus is a common first
step in building a machine translation system.

1. Infer alignments between the words, using the IBM models.

2. Extract and score phrase pairs.

3. Estimate a global scoring function to optimize (a proxy for)
translation quality.

4. Decode French sentences into English ones.

The noisy channel pattern isn’t taken quite so seriously when we
build real systems, but we still have notions of faithfulness and
fluency, and language models are really, really important for the
latter.
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Phrases?

Phrase-based translation uses automatically-induced
subsequences/chunks of words.
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Examples of Phrases
Courtesy of Chris Dyer.

German English p(f̄ | ē)

das Thema

the issue 0.41
the point 0.72
the subject 0.47
the thema 0.99

es gibt
there is 0.96
there are 0.72

morgen tomorrow 0.90

fliege ich
will I fly 0.63
will fly 0.17
I will fly 0.13
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Phrase-Based Translation Model
Originated by Koehn et al. (2003).

R.v. A captures segmentation of sentences into phrases, alignment
between them, and reordering.

to the conference

Morgen  fliege ich nach Pittsburgh zur Konferenz

Tomorrow I will fly in Pittsburgh e

f
a

p(f ,a | e) = p(a | e) ·
|a|∏
i=1

p(f̄ i | ēi)
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Extracting Phrases

After inferring word alignments, apply heuristics.
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Extracting Phrases

After inferring word alignments, apply heuristics.
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Scoring Whole Translations

score(e,a;f) = log p(e)︸ ︷︷ ︸
language model

+ log p(f ,a | e)︸ ︷︷ ︸
translation model

Remarks:

I Segmentation, alignment, reordering are all predicted as well
(not marginalized).

I This does not factor nicely.

I I am simplifying!

I Reverse translation model typically included.
I Each log-probability is treated as a “feature” and weights are

optimized for Bleu performance.
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Scoring Whole Translations

score(e,a;f) = log p(e)︸ ︷︷ ︸
language model

+ log p(f ,a | e)︸ ︷︷ ︸
translation model

+ log p(e,a | f)︸ ︷︷ ︸
reverse t.m.

Remarks:

I Segmentation, alignment, reordering are all predicted as well
(not marginalized).

I This does not factor nicely.
I I am simplifying!

I Reverse translation model typically included.

I Each log-probability is treated as a “feature” and weights are
optimized for Bleu performance.
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Scoring Whole Translations

score(e,a;f) = βl.m. log p(e)︸ ︷︷ ︸
language model

+βt.m. log p(f ,a | e)︸ ︷︷ ︸
translation model

+ βr.t.m.log p(e,a | f)︸ ︷︷ ︸
reverse t.m.

Remarks:

I Segmentation, alignment, reordering are all predicted as well
(not marginalized).

I This does not factor nicely.
I I am simplifying!

I Reverse translation model typically included.
I Each log-probability is treated as a “feature” and weights are

optimized for Bleu performance.

52 / 89



Decoding: Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch
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Decoding: Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch
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Beam Search for Sequential Classifiers
Review from conditional random fields lecture.

Input: x (length n), a sequential classifier’s scoring function score,
and beam width k

Let H0 score hypotheses at position 0, defining only H0(〈〉) = 0.
For i ∈ {1, . . . , n}:
I Empty C.
I For each hypothesis ŷ1:i−1 scored by Hi−1:

I For each y ∈ L, place new hypothesis
ŷ1:iy → Hi−1(ŷ1:i) + score(x, i, ŷ1:i−1, y) into C.

I Let Hi be the k-best scored elements of C.

Output: best scored element of Hn.
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Decoding in Phrase-Based MT
Adapted from Koehn et al. (2006).

Initial state: 〈◦ ◦ . . . ◦︸ ︷︷ ︸
|f |

, “”〉 with score 0

Goal state: 〈• • . . . •︸ ︷︷ ︸
|f |

, e∗〉 with (approximately) the highest score

Reaching a new state:

I Find an uncovered span of f for which a phrasal translation
exists in the input (f̄ , ē)

I New state appends ē to the output and “covers” f̄ .

I Score of new state includes additional language model,
translation model components for the global score.
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Reflection

Consider how decoding with phrase-based MT (slide 57), which
might not always move left-to-right across the input, differs from
the sequential classification case (slide 56). How might you modify
the beam search algorithm to allow the kind of exploration we need
to decode with the models described here?
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, “”〉, 0
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, “Mary”〉, log pl.m.(Mary) + log pt.m.(Maria | Mary)
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary give a slap to the witch green

did not slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈• • ◦ ◦ ◦ ◦ ◦ ◦ ◦, “Mary did not”〉,
log pl.m.(Mary did not) + log pt.m.(Maria | Mary)

+ log pt.m.(no | did not)
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary to the witch green

did not

slap

by

to the

the

the witch

hag bawdy

green witch

〈• • • • • ◦ ◦ ◦ ◦, “Mary did not slap”〉,
log pl.m.(Mary did not slap) + log pt.m.(Maria | Mary)

+ log pt.m.(no | did not) + log pt.m.(dio una bofetada | slap)
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Machine Translation: Remarks

Sometimes phrases are organized hierarchically (Chiang, 2007).

Extensive research on syntax-based machine translation (Galley
et al., 2004), but requires considerable engineering to match
phrase-based systems.

Some good pre-neural overviews: Lopez (2008); Koehn (2009)
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The Main Dish
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Neural Machine Translation

Original idea proposed by Forcada and Ñeco (1997); resurgence in
interest starting around 2013.

Strong starting point for current work: Bahdanau et al. (2014).
(My exposition is borrowed with gratitude from a lecture by Chris
Dyer.)

This approach eliminates (hard) alignment and phrases.

Take care: here, the terminology “encoder” and “decoder” are
used differently than in the noisy-channel pattern.
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High-Level Model

p(E = e | f) = p(E = e | encode(f))

=
∏̀
j=1

p(ej | e0, . . . , ej−1, encode(f))

The encoding of the source sentence is a deterministic function of
the words in that sentence.
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Neural MT Source-Sentence Encoder

Ich möchte  ein  Bier
lookups

forward RNN

backward RNN [  ]
source sentence encoding

0

0

F is a d×m matrix encoding the source sentence f (length m).
Originally, RNNs (depicted here) were used; now transformers are
more popular (Vaswani et al., 2017).
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Decoder: Contextual Language Model

Two inputs, the previous word and the source sentence context.

st = grecurrent(eet−1 , Fat︸︷︷︸
“context”

, st−1)

yt = goutput(st)

p(Et = v | e1, . . . , et−1,f) = [yt]v

(The forms of the two component gs are suppressed; just
remember that they (i) have parameters and (ii) are differentiable
with respect to those parameters.)

The neural language model we discussed earlier (Mikolov et al.,
2010) didn’t have the context as an input to grecurrent.
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Neural MT Decoder

[  ]
0
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Neural MT Decoder

[               ][  ]
0

a1⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

a1⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ]
a1 a2⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ]
a1 a2⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ]
a1 a2 a3⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ]
a1 a2 a3⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ]
a1 a2 a3 a4⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ]
a1 a2 a3 a4⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤

[               ]
[               ]
[               ]
[               ]
[               ]
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Computing “Attention”

Let Vst−1 be the “expected” input embedding for timestep t.
(Parameters: V.)

Attention is at = softmax
(
F>Vst−1

)
.

Context is Fat, i.e., a weighted sum of the source words’
in-context representations.

With transformers, there’s also attention over the previously
decoded target-language words.
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Learning and Decoding

log p(e | encode(f)) =
m∑
i=1

log p(ei | e0:i−1, encode(f))

is differentiable with respect to all parameters of the neural
network, allowing “end-to-end” training.

Decoding typically uses beam search.
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Remarks

We covered two approaches to machine translation:

I Phrase-based statistical MT following Koehn et al. (2003),
including probabilistic noisy-channel models for alignment (a
key preprocessing step; Brown et al., 1993), and

I Neural MT with attention, following Bahdanau et al. (2014).

Note two key differences:

I Noisy channel p(e)× p(f | e) vs. “direct” model p(e | f)
I Alignment as a discrete random variable vs. attention as a

deterministic, differentiable function
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Additional Notes

We didn’t talk about tokenization; current systems split words into
smaller units (Sennrich et al., 2016b; Wu et al., 2016) for better
generalization to unseen words.

Neural MT is the strongest approach today, at least when you have
enough data.

When monolingual target-language data is plentiful, we’d like to
use it! Some recent neural models try (Sennrich et al., 2016a; Xia
et al., 2016; Yu et al., 2017).
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Limitations

MT is now widely deployed commercially and works well, for some
language pairs and some genres of usage. Expect degradation on
any language variety that looks different from the training data.
All MT models pick up cultural biases (Stanovsky et al., 2019).
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Digestif: Sequence-to-Sequence Everything?

Some have recently proposed the MT-derived
sequence-to-sequence paradigm as a way to tackle a much broader
range of NLP problems, including summarization, question
answering, and even non-traditionally sequential tasks like
classification (Raffel et al., 2020; Lewis et al., 2020).

This view also extends to pretraining, as you might expect.
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