
Assignment 0

CSE 517 and 447: Natural Language Processing - University of Washington

Winter 2025

Please consult the course website for current information on the due date, the late policy, and
any data you need to download for this assignment.

This assignment is intended as a tool for students who have an interest in taking CSE 447
or CSE 517 (Natural Language Processing) but are not enrolled in the programs these courses
were designed for. You should complete it on your own before committing to take the class.
You’re welcome to use any textbook or online references when completing this assignment.
The goal is not to check whether you remember all the detailed information required to get to a
solution, but rather to see that you have internalized enough mathematical background to know,
roughly, how to proceed, and how to find the details. Note that this assignment is neither an
exhaustive “checklist” of everything you might need to know before starting this course, nor will
all of the specific concepts here necessarily make an appearance in the course. The assignment is
an approximation.

The assignment covers:

• Probability and statistics

• Linear algebra

• Calculus

• Dynamic programming

• Reflections on natural language

This assignment is not graded. You should evaluate your own answers using the solutions
given. Instead of thinking of this as a “pass or fail” assignment, you should use it as an estimate
of the amount of extra time you might need to put in to achieve your own goals for this class. For
example:

• If you are comfortable doing every problem and scored very well (say, all but one of the
problems mostly correct), then you shouldn’t have too many problems with the mathematical
content of CSE 447/517.

• If you found that you didn’t know how to get started with many of the problems, and the
concepts used in the solutions were unfamiliar to you, then you might not be ready for CSE
447/517 yet.1

1Recommended courses for probability & statistics: CSE 312, STAT 390/391; for linear algebra: MATH 308,
MATH 318; for calculus: MATH 126.
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• If you found the challenge somewhere between those two points (e.g., you needed to review
material from courses you took in the past or fill in some gaps using online materials), then
you should expect to need extra time in CSE 447/517 if you want to do well. Every year
some students in this situation take the course, and some do quite well; you should enroll
only if you have the extra time and energy to spend on the course.
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When we can’t think for ourselves,
we can always quote.

LUDWIG WITTGENSTEIN

1 Probability and Statistics

Mango
Suppose there are two bags. Bag 1 contains 4 mangoes and 2 apples. Bag 2 contains 4 mangoes,
2 apples, and 2 bananas. There is also a biased coin that comes up heads with probability 0.6 (and
tails with probability 0.4).

Your friend goes behind a screen to toss the coin, and chooses a fruit (uniformly at random)
from bag 1 if it comes up heads, or from bag 2 if it comes up tails. Your friend comes out from
behind the screen and hands you a mango; you don’t know which way the coin landed or which
bag the mango came from.

What is the probability that the mango was picked from bag 2?

Running
Consider a sequence of coin tosses, which we can encode as a binary string (1 will mean heads, 0
will mean tails). Let a “run of n tails” mean a sequence of (exactly) n tails, preceded by a heads or
the beginning of the sequence, and followed by a heads or the end of the sequence. For example,
in this encoding of a sequence of coin tosses, there are two runs of 3 tails: 11000101110001. If
you toss a fair coin 100 times, what is the expected number of runs of six tails?

Bias Detection
Your friend has two coins; coin A is a fair coin worth $1,000 and coin B is biased and worth $1,200
because its bias was induced by a famous NLP researcher. When tossed, the fair coin (A) comes up
heads (1) with probability 1

2
. The biased coin (B) comes up tails (0) with probability 3

4
. Your friend

chooses one of the coins at random (equal probability of choosing coin A or coin B); you want to
determine which coin it is, using statistical reasoning. You toss the coin 5 times independently and
observe (0, 0, 1, 0, 1) before your friend snatches it back. What is the probability that the coin you
were given was coin B, given what you have observed?

Suppose your friend offers to give you the coin to keep, but only if you can correctly guess
whether it was fair coin A or biased coin B. What is your guess and why?

3



2 Linear Algebra

Random Diagonal

Let A =

a1,1 . . . 0
... . . . ...
0 . . . an,n

, where all entries of A are 0 except its diagonal entries (a1,1, . . . , an,n).

Now suppose that each diagonal entry ai,i is drawn uniformly from the range [−1, 1] (consider it
random variable Ai,i), and assume that n > 1. Find:

• p(A1,1 = 0)

• p(An,n > 0.5 | An−1,n−1 ≥ 0)

• p(rank(A) < n)

• p(A � 0), i.e., the probability A is positive semidefinite (hint: if n = 2, what are the
eigenvalues of A?)

Matrix Operations

Let B =

 1 −1 0
−1 2 −1
0 −1 1

.

• Is B invertible? If so, find B−1.

• Is B diagonalizable? If so, find its diagonalization.
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3 Calculus

Derivatives of Activation Functions
The “sigmoid” and hyperbolic tangent functions are commonly used in neural networks to mono-
tonically map a real-valued scalar into a finite range.

• Let σ(x) = 1
1+e−x . Write dσ

dx
in terms of σ(x).

• Let tanh(x) = ex−e−x

ex+e−x . Write d
dx

tanh(x) in terms of σ and x.
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4 Dynamic Programming

Tile Collection
Consider an n× n grid. At position (i, j) in the grid, there is a reward ri,j > 0. You want to travel
from the top left tile (at i = j = 1) to the bottom right tile (i = j = n) while collecting rewards on
the tiles you’ve visited. You can only move down or right one tile in each step (not diagonally).

Design a dynamic programming algorithm that maximizes (and outputs) the sum of your re-
ward when you reach the bottom right tile. A 3 × 3 example is shown below; the optimal path is
colored in red. Give the time and space complexity of your algorithm.

1 2 8
6 5 5
3 4 1

5 Reflections on Natural Language

Lamp and Box
Consider the two sentences:

1. The lamp won’t fit in the box because it is too big.

2. The lamp won’t fit in the box because it is too small.

For each sentence, read it, then ask yourself what it refers to. What is your answer for sentence
1, and what is your answer for sentence 2? Can you create another sentence pair like these, where
only one word is different, but the meaning of another word (a pronoun) changes? What do you
think a computer program would require to make such judgments the same way a human typically
would?
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Solutions
Mango There are three events. First, the coin toss, random variable C, which ranges over
{heads, tails}, and you know that p(C = heads) = 0.6. Next, the bag, B, which ranges over
{1, 2}. Last, the fruit, F , which ranges over {apple, banana,mango}. You are interested in
p(B = 2 | F = mango). By the definition of conditional probability,

p(B = 2 | F = mango) =
p(B = 2, F = mango)

p(F = mango)
. (1)

The terms in both the numerator and denominator fail to mention random variable C, and the
denominator also fails to mention random variableB. We must therefore rewrite each as a marginal
probability that sums over all possible values of the unmentioned random variables:

=

∑
c∈{heads,tails} p(C = c, B = 2, F = mango)∑

c∈{heads,tails}
∑

b∈{1,2} p(C = c, B = b, F = mango)
(2)

These joint probabilities can be factored using the chain rule. We’ll order the random variables as
C, then B, then F , to fit the story:

=

∑
c∈{heads,tails} p(C = c) · p(B = 2 | C = c) · p(F = mango | C = c, B = 2)∑

c∈{heads,tails}
∑

b∈{1,2} p(C = c) · p(B = b | C = c) · p(F = mango | C = c, B = b)
(3)

We can drop C from the final factor in both the top and the bottom, because once the bag is chosen,
the coin toss doesn’t matter (there’s conditional independence between the fruit and the coin, given
the bag):

=

∑
c∈{heads,tails} p(C = c) · p(B = 2 | C = c) · p(F = mango | B = 2)∑

c∈{heads,tails}
∑

b∈{1,2} p(C = c) · p(B = b | C = c) · p(F = mango | B = b)
(4)

Let’s unfold the numerator and plug in the values provided by the problem:

p(C = heads) · p(B = 2 | C = heads) · p(F = mango | B = 2) (5)
+ p(C = tails) · p(B = 2 | C = tails) · p(F = mango | B = 2) (6)

= 0.6 · 0 · 4
8
+ 0.4 · 1 · 4

8
= 0.2 (7)

Now we unfold the denominator, which has four terms. Two of them are zero and are not included
here, for clarity.

p(C = heads) · p(B = 1 | C = heads) · p(F = mango | B = 1) (8)
+ p(C = tails) · p(B = 2 | C = tails) · p(F = mango | B = 2) (9)

= 0.6 · 1 · 4
6
+ 0.4 · 1 · 4

8
= 0.4 + 0.2 = 0.6 (10)

The final answer, then, is 0.2
0.6

= 1
3
.
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Running The quantity we are interested in is E[instances of runs of six tails] which isn’t very
mathematical. Let the 100 binary random variables be denoted X1, . . . , X100; the value 0 will
denote tails and 1 heads. Let X0 and X101 denote the non-coin tosses at the beginning and end of
the sequence, respectively, which can never take the value 0 (or 1). The key is to use linearity of
expectation to break the desired quantity down into a sum of 95 much easier expectations:

E[instances of runs of six tails] =
95∑
i=1

E[1 if a run starts at position i, 0 otherwise] (11)

=
95∑
i=1

p

(
Xi−1 6= 0, Xi = 0, Xi+1 = 0, Xi+2 = 0,
Xi+3 = 0, Xi+4 = 0, Xi+5 = 0, Xi+6 6= 0

)
(12)

We don’t worry about positions 96 and above, because a run of six can’t start there (X101 can’t be
0); the last position for one of our runs to start is position 95. You may have an uneasy feeling
about this transformation, because the presence of a run that covers position i and the presence of
a run that covers position i + 1 are two events that are most definitely not independent! Linearity
of expectation, remember, does not depend on the random variables being independent. Now, for
every i, the eight events inside the probability expression are independent of each other, so we can
write:

p(Xi−1 6= 0, Xi = 0, Xi+1 = 0, Xi+2 = 0, Xi+3 = 0, Xi+4 = 0, Xi+5 = 0, Xi+6 6= 0) (13)

= p(Xi−1 6= 0) ·

(
5∏
j=0

·p(Xi+j = 0)

)
· p(Xi+6 6= 0) (14)

= p(Xi−1 6= 0) · 1
64
· p(Xi+6 6= 0) (15)

Note that line 15 holds because we know the coin is fair and (1
2
)6 = 1

64
. There are three separate

cases we need to handle to get the sum in expression 12.

1. When i = 1, the first factor p(X0 6= 0) = 1 (because it’s before the beginning of the
sequence), and the last factor, p(X6 6= 0) = 1

2
. So expression 15 is 1

128
.

2. When i = 95, the first factor p(X94 6= 0) = 1
2
, and the last factor, p(X101 6= 0) = 1 (because

it’s past the end of the sequence). So expression 15 is 1
128

.

3. For all other values of i, from 2 to 94, both the first and last factors are 1
2
, so expression 15

is 1
256

. There are 93 cases like this.

So the final answer will be:

1

128
+ 93 · 1

256
+

1

128
=

97

256
≈ 0.3789 (16)

Note that, if we had been less careful about the beginning and the end of the sequence, and treated
the first and last summands like the middle ones, we’d have come up just a little short (around
0.37). If we’d done that and also ignored the requirement that a proper run of six zeroes must
not be preceded or succeeded immediately by another zero, then we’d have come up with a much
larger number (95

64
≈ 1.48).
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Bias Detection Let’s introduce two random variables. Let X range over {biased, fair} indicate
which coin you were handed. Let Y1, . . . , Y5 correspond to the five coin tosses. For the first
question, we are interested in p(X = biased | Y1 = 0, Y2 = 0, Y3 = 1, Y4 = 0, Y5 = 1). By the
definition of conditional probability (and letting yi denote the observed value of Yi),

p(X = biased | Y1 = 0, Y2 = 0, Y3 = 1, Y4 = 0, Y5 = 1) (17)

=
p(X = biased, Y1 = 0, Y2 = 0, Y3 = 1, Y4 = 0, Y5 = 1)∑

x∈{biased,fair} p(X = x, Y1 = 0, Y2 = 0, Y3 = 1, Y4 = 0, Y5 = 1)
(18)

=
p(X = biased) ·

∏5
i−1 p(Yi = yi | X = biased)

p(X = biased) ·
∏5

i−1 p(Yi = yi | X = biased) + p(X = fair) ·
∏5

i−1 p(Yi = yi | X = fair)
(19)

=
1
2
·
(
3
4

)3 · (1
4

)2
1
2
·
(
3
4

)3 · (1
4

)2
+ 1

2
·
(
1
2

)5 =
27

2048
27

2048
+ 1

64

≈ 0.4576 (20)

The sensible answer would be to guess that you were handed the biased coin. This may come
as a surprise, because according to the above calculation, the posterior probability is higher for the
fair coin (i.e., 1− 0.4576 > 0.4576). Your “maximum a posteriori” guess should be the fair coin.
But the biased coin is worth more. Note that, if you guess “fair,” your expected winnings are

0.4576× $0 + (1− 0.4576)× $1000 = $542.37 (21)

because there’s still a 45.76% chance you’re wrong and will get nothing. Meanwhile, if you guess
“biased,” then your expected winnings are

0.4576× $1200 + (1− 0.4576)× $0 = $549.15 (22)

By a slim margin, you’ll do better in expectation by guessing “biased.”

Random Diagonal

• Because A1,1 is a continuous random variable, the probability that it takes value exactly 0 is
zero. (If we’d asked for p(−ε < A1,1 < ε), then your answer would have been ε.)

• Each Ai,i is independent of the others, so

p(An,n > 0.5 | An−1,n−1 ≥ 0) = p(An,n > 0.5) (23)

=

∫ 1

0.5

1

1− (−1)
dx (24)

=
1

2
− 1

4
(25)

=
1

4
(26)

• Recall that to find rank(A), we must determine the number of linearly independent columns
it has. The only way column i will become linearly dependent on other columns is if Ai,i
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takes value zero.

p(rank(A) < n) = p(at least one Ai,i takes value zero) (27)
= 1− p(all Ai,i are nonzero) (28)

= 1−
n∏
i=1

(1− p(Ai,i = 0)) (29)

= 0 (30)

(Refer to the first part of this problem.)

• Recall that A � 0 when all eigenvalues of A are nonnegative.

We can find the eigenvalues λi of A by solving the equation2 det(A − λI) = 0. This leads
to: ∣∣∣∣∣∣∣

a1,1 − λ1 . . . 0
... . . . ...
0 . . . an,n − λn

∣∣∣∣∣∣∣ = 0 (31)

n∏
i=1

(ai,i − λi) = 0 (32)

∀i, λi = ai,i (33)

Therefore,

p(A � 0) = p(A1,1 ≥ 0, . . . , An,n ≥ 0) (34)

=
n∏
i=1

p(Ai,i ≥ 0) (35)

=

(
1

2

)n
(36)

Matrix Operations We first find the eigenvalues of B by solving:∣∣∣∣∣∣
1− λ −1 0
−1 2− λ −1
0 −1 1− λ

∣∣∣∣∣∣ = 0 (37)

= −3λ+ 4λ2 − λ3 (38)
= λ(−3 + 4λ− λ2) (39)
= −λ(λ− 1)(λ− 3) (40)

So the eigenvalues of B are 0, 1, and 3. By the invertible matrix theorem, this lets us conclude
that B is not invertible; it has zero as an eigenvalue.

2 det(A) =
∏n

i=1 ai,i holds for any diagonal matrix A, which can be shown by cofactor expansion.

10



Next, we find those three eigenvalues’ respective eigenvectors by solving B − λx = 0. To do
this, you can use Gaussian elimination to convert the left side matrix to row echelon form, and then
back-substitute. You should get, for eigenvalues 0, 1, and 3 respectively:

v1 =

 1
1
1

 , v2 =

 1
0
−1

 , v3 =

 1
−2
1

 (41)

Note that any of the above can be multiplied by a nonzero scalar.
Recall that an n× n matrix with n linearly independent eigenvectors can be diagonalized.

X−1AX = D =

λ1 0 0
0 λ2 0
0 0 λ3

 ,where X = [v1 | v2 | v3] (42)

Derivatives of Activation Functions First, the derivative of the sigmoid function:

d

dx
σ(x) =

d

dx
(1 + e−x)−1 (43)

= −(1 + e−x)−2 · d
dx

(1 + e−x) (44)

= −(1 + e−x)−2 · (−e−x) (45)

=
e−x

(1 + e−x)2
(46)

=
e−x

1 + e−x
· 1

1 + e−x
(47)

Observe that:

1− 1

1 + e−x
=

1 + e−x

1 + e−x
− 1

1 + e−x
(48)

=
e−x

1 + e−x
(49)

So we have

d

dx
σ(x) =

e−x

1 + e−x
· 1

1 + e−x
(50)

=

(
1− 1

1 + e−x

)
· σ(x) (51)

= (1− σ(x))) · σ(x) (52)

For the hyperbolic tangent, there’s more than one way to do it; we’ll show two of them. First
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write tanh in terms of σ, x, and constants.

tanh(x) =
ex − e−x

ex + e−x
(53)

=
1− e−2x

1 + e−2x
· e

x

ex
(54)

=
1

1 + e−2x
1− e−2x

1
(55)

= a · b (56)

Observe that:

a = σ(2x) (57)

−b = e−2x − 1 (58)
−b+ 2 = e−2x + 1 (59)

1

−b+ 2
=

1

1 + e−2x
= σ(2x) (60)

b = 2− 1

σ(2x)
(61)

Thus

tanh(x) = a · b (62)

= σ(2x)

(
2− 1

σ(2x)

)
(63)

= 2σ(2x)− 1 (64)

We can then use the chain rule to find its derivative, given that d
du
σ(u) = σ(u)(1− σ(u))u′:

d

dx
tanh(x) =

d

dx
[2σ(2x)− 1] (65)

= 2σ(2x)(1− σ(2x)) · d
dx

[2x] (66)

= 4σ(2x)(1− σ(2x)) (67)
= 4σ(2x)− 4σ2(2x) (68)
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Another way to do it is to derive tanh first:

d

dx
tanh(x) =

d

dx

ex − e−x

ex + e−x
(69)

=
(ex + e−x) d

dx
(ex − e−x)− (ex − e−x) d

dx
(ex + e−x)

(ex + e−x)2
(70)

=
(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2
(71)

=
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
(72)

=
(ex + e−x)2

(ex + e−x)2
− (ex − e−x)2

(ex + e−x)2
(73)

= 1− (ex − e−x)2

(ex + e−x)2
(74)

= 1− tanh2(x) (75)
= (1 + tanh(x))(1− tanh(x)) (76)
= (1 + 2σ(2x)− 1)(1− 2σ(2x) + 1) (77)
= (2σ(2x)) · (2− 2σ(2x)) (78)
= 4σ(2x)− 4σ2(2x) (79)

Tile Collection Our objective is to travel from (1, 1) to (n, n) while maximizing the total reward.
Let mi,j denote the maximum reward you can obtain at (i, j); the goal of the problem is to find
mn,n. Since we can only move down or right, there are only two tiles that can directly reach (n, n):
(n− 1, n) and (n, n− 1). This means that:

mn,n = rn,n +max(mn−1,n,mn,n−1) (80)

The fact that solving the problem at (n, n) reduces to solving two similar but slightly smaller
problems is known as “optimal substructure.” Next notice that the equation generalizes to all
positions on the grid except at the top boundary (i = 1), right boundary (j = 1), and the top left
corner (i = j = 1).

mi,j = ri,j +


max(mi−1,j,mi,j−1) if i > 1 ∧ j > 1
mi,j−1 if i = 1 ∧ j > 1
mi−1,j if i > 1 ∧ j = 1
0 if i = j = 1

(81)

In order to solve the problem, one must start at the base case (i = j = 1) and proceed outward
to calculate all of mi,j . Every time a “max” is calculated, one must record the preceding position
that gave the max (known sometimes as the “argmax”). For completeness, here are the argmax

13



calculations, to be done alongside the mi,j calculations above:

ai,j =


(i− 1, j) if i > 1 ∧ j > 1 ∧mi−1,j ≥ mi,j−1
(i, j − 1) if i > 1 ∧ j > 1 ∧mi−1,j < mi,j−1
(i, j − 1) if i = 1 ∧ j > 1
(i− 1, j) if i > 1 ∧ j = 1
∅ if i = j = 1

(82)

By following back the trail of argmaxes from (n, n) to (1, 1), one recovers the best path in
reverse. The reward, again, is mn,n.

Space complexity is O(n2), because we need to store a constant amount of information for
each tile on the grid (mi,j and ai,j). Runtime is also O(n2); we perform a constant amount of work
for each tile.

Lamp and Box Most people will understand it to refer to the lamp in the first example and the
box in the second example. Here’s another example (who does they refer to?):

1. The city councilmen refused the demonstrators a permit because they feared violence.

2. The city councilmen refused the demonstrators a permit because they advocated violence.

These judgments are generally considered to rely on commonsense knowledge; we need to
know that, in general, for X to fit in Y , X should be smaller than Y .

To learn more about the history of these kinds of questions, see https://en.wikipedia.
org/wiki/Winograd_schema_challenge. A more recent version of the challenge is dis-
cussed in this paper, which was published at the AAAI 2020 conference: https://arxiv.
org/pdf/1907.10641.pdf.
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