Assignment 2: Neural Networks
Instructor: Noah Smith CSE 517 and 447 — Winter 2025

Due at 11:59pm PT, January 29, 2025.
60 points for CSE 447 (+ 5 points extra credit) / 70 points for CSE 517

In this assignment, you will learn how to design, train, and evaluate feed-forward neural networks from
scratch in PyTorch to solve sentiment analysis and social commonsense reasoning problems.

You will submit both your code and writeup (as PDF) via Gradescope. Remember to specify your
collaborators (including AI tools like ChatGPT) and how they contribute to the completion of your
assignment at the beginning of your writeup. If you work on the assignment independently, please specify
so, too.

Required Deliverables

e Code Notebook: The assignment is associated with Jupyter notebook (CSE447_Assignment2.ipynb).
Please download the notebook as Jupyter notebook files (.ipynb) and submit them in Gradescope.
On Google Colab you can do so by File — Download — Download .py. Please comment out
any additional code you had written to solve the write-up exercises before submitting on
gradescope to avoid timeouts.

e Write-up: For written answers and open-ended reports, produce a single PDF for §1-2 and submit
it in Gradescope. We recommend using Overleaf to typeset your answers in TEX, but other legible
typed formats are acceptable. We do not accept hand-written solutions because grading hand-written
reports is incredibly challenging.

e NLU Exercise (Optional for CSE 447) For question 4, along with the write-up, also submit the
Python script (.py) file with your code used for defining the data processing, network architecture, and
training, tuning, and evaluating the model.

Recommended Reading

The homework is based on chapter 7 of Jurafsky and Martin. You may also be interested in reading the GloVe
paper (Pennington et al. 2014), as we will be making heavy use of GloVe word vectors in this homework. We
also recommend reading the SociallQA paper (Sap et al. 2019), which introduces the social commonsense
reasoning dataset that you will be working with on in the last exercise of this homework. We provide all the
details necessary to solve the homework in this handout and the notebooks, so it is not required to read the
these papers to solve the exercises. However, we recommend going through them if you are confused about
any concepts that are covered in the homework. You are also welcome to come to office hours if you have
trouble understanding any of these concepts.

Required Compute

You can run the notebook on Google Colab with CPU runtime. If your implementation is optimized, except
a few cases, all test cases should run fairly quickly. You can use a GPU runtime for faster runtimes. Please
do not hardcode the device on PyTorch as "cuda" anywhere, as the Gradescope autograder won'’t be using
a GPU. Instead, you can dynamically set the device as "cuda" if the system where the code is being run has
a cuda-enabled GPU by running the following command:

https://drive.google.com/file/d/1d983QFV2gPnzXJ4VZ4KFiUC2Kk1qVeju/view?usp=sharing
https://web.stanford.edu/~jurafsky/slp3/
https://nlp.stanford.edu/pubs/glove.pdf
https://aclanthology.org/D19-1454.pdf

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
Don’t worry if you do not have experience with devices in PyTorch,; we discuss how to work with them
in the notebook.

Acknowledgment

This assignment is designed by Kabir Ahuja with invaluable feedback from Khushi Khandelwal, Melissa
Mitchell, Kavel Rao, and Riva Gore. Kavel Rao also helped design autograder for the homework.

1 Neural Networks for NLP Tasks (60 pt (4+5 Bonus) for 447 and
70 pt for 517.)

You will learn how to define, train, and evaluate neural network models for NLP tasks. In particular, we will
work with the simplest form of neural networks, i.e., feedforward networks (FFNs), also called multi-layer
perceptrons (MLPs). We will focus on two tasks, sentiment analysis from the previous homework and a task
that operationalizes social commonsense reasoning.

Deliverables:

1. Coding Exercises: You should complete the code blocks denoted by YOUR CODE HERE: in the Python
notebook. Do not forget to remove raise NotImplementedError() from the code blocks. To submit
your code, download your notebook as a Jupyter notebook file (CSE447_Assignment2.ipynb).

2. Write-up: Your report for §1.2 should be no more than four pages. However, you will most likely
be able to answer all questions within three pages.

3. NLU Exercise (Optional for CSE 447) For question 4 the write-up, along with the write up,
also submit the Python script (.py) file with your code used for defining the data processing, network
architecture, and training, tuning, and evaluating the model.

FFNs for text classification. For text classification, we will work with FFNs with a single hidden layer
and ReLU activation function. The network architecture is provided in Figure 1. Note that FFNs take a
fixed-length vector as input (just like we saw in multinomial and binomial logistic regression). Each text
input (here, sentence) needs to be converted into a fixed-length vector representation, regardless of how many
words it contains. You will use sentence embeddings— either derived by summing up GloVE vectors for
the words in the input or sentence transformer embeddings—in your coding exercises. We will discuss how
these embeddings are constructed later in the course.

1\ probs \in R or R*c depending on binary or multiclass

rFT T T TTTTTTTISISSISSSSTS \
‘Linear (h, 1) for binary classiFica’Gion:
: or Linear(h, ¢) for wmulticlass]

Sentence Ewmbeddings (d-dimensional)

Figure 1: A feedforward neural network architecture for sentence classification.

FFNs for Multiple Choice Question Answering. Apart from the sentiment analysis task, in this
homwework you will also be working with a social common sense reasoning dataset called SociallQA. The
SociallQA task has as input a context ¢ about some social situation, e.g., Jordan wanted to tell Tracy a secret,
so Jordan leaned towards Tracy, a question ¢ about the context, e.g. Why did Jordan do this?, and three
options about the correct answer, ay, as, as, e.g., a) to make sure no one hears it, b) so that everyone hears
it, and ¢) get flirty with Tracy. The task, given input ¢, ¢, a1, as,as, is to select the correct answer among
ay, az, and ag. Strictly speaking, this is not a typical classification problem with fixed labels (like positive
and negative clases in the sentiment analysis task). Therefore, we might be able to get better performance

with a neural network architecture that’s different from the one we used for text classification. You will be
implementing the architecture in Figure 2 below for this task.

probs \in R*3

\ Concat !
logit(answerA) logit(answerB) logit(answerc)
P A i il s \ Ciaamasac Ll St \
[) [\ [|
1 Linear (d, 1) 1 1 Linear (d, 1) ! : Linear (d, 1) 1
l

N .) N o ! R o)

......... P TR IR
I 3 I \ (|
| RelU ' | RelU 1 | RelU 1
! | 4 | ! |
\

\ \
| [1 | |
(Linear (34, d)] . Linear (3d, d)) : Linear (34, d) 1
L J L I kL o)

T T T] e Coneatt R

ontext Question answerd Context Question answerB Context Question answerC
?W)“ (Rf:) (R™d) (R) (R*d) (R™) (R) (R) (R~d)

Figure 2: A feedforward neural network architecture for multiple choice question answering.

This architecture performs three forward passes, one for each candidate answer with the context and
question. Each pass scores the validity of an answer given the context and question. The scores for the three
answers are then concatenated and passed through a softmax layer to get a vector of probabilities, one per
answer. Note that the network parameters across the three forward passes are shared, i.e., we use the exact
same weights (and biases) to compute the representations for each combination. In PyTorch’s terminology

the we use the same linear layers for each forward pass instead of creating separate linear layers for each
combination.

1.1 Coding Questions

e class FFNN (3 pts)

e functions evaluate and train (12 pts)

https://aclanthology.org/D19-1454.pdf

function predict (4 pts)

class MCQFFNN (6 pts)

functions evaluate_siqa and train_siqa (15 pts)

function predict_siqa (4 pts)

1.2 Write-up Questions
Check section 1 of CSE447_Assignment2_Writeup.pdf for detail.

https://www.overleaf.com/read/snjpcwvsnvrz##faf34d

	Neural Networks for NLP Tasks (60 pt (+5 Bonus) for 447 and 70 pt for 517.)
	Coding Questions
	Write-up Questions

