Assignment 3: Lexical Sementics and Word Vectors
Instructor: Noah Smith CSE 517 and 447 — Winter 2025

Due at 11:59pm PT, February 12, 2025.
40 points for CSE 447 and CSE 517

In this assignment, you will learn about pretrained word embeddings and how to use them to solve NLP
tasks.

You will submit both your code and writeup (as PDF) via Gradescope. Remember to specify your
collaborators (including AI tools like ChatGPT) and how they contribute to the completion of your
assignment at the beginning of your writeup. If you work on the assignment independently, please specify
so, too.

Required Deliverables

e Code Notebook: The assignment is associated with Jupyter notebook. (CSE447_Assignment3.ipynb)
Please download the notebook as Jupyter notebook files (.ipynb) and submit them in Gradescope.
On Google Colab you can do so by File — Download — Download .ipynb. Please comment out
any additional code you had written to solve the write-up exercises before submitting on
gradescope to avoid timeouts.

e Write-up: For written answers and open-ended reports, produce a single PDF and submit it in
Gradescope. We recommend using Overleaf to typeset your answers in IXTEX, but other legible typed
formats are acceptable. We do not accept hand-written solutions because grading hand-written reports
is incredibly challenging.

Recommended Reading

The homework is based on chapter 6 of Jurafsky and Martin. You can also check the GloVe paper (Pennington
et al. 2014), as we will be making heavy use of GloVe word vectors in this homework. For evaluating biases
in word embeddings, you will be implementing the Word Embedding Association Test (WEAT), and we
recommend reading Caliskan et al. 2017, to understand the method in detail. We provide all the details
necessary to solve the homework in this handout and the notebooks, so it is not required to read the these to
solve the exercises. However, we recommend going through them if you are confused about any concepts that
are covered in the homework. You are also welcome to come to office hours if you have trouble understanding
any of these concepts.

Required Compute

You can run the notebooks on Google Colab with CPU runtime. If your implementation is optimized, except
a few cases, all test cases should run fairly quickly. You can use a GPU runtime for faster runtimes. Please
do not hardcode the device on pytorch as "cuda" anywhere, as gradescope autograder won’t be using a
GPU. Instead, you can dynamically set the device as "cuda" if the system where the code is being run has
a cuda-enabled GPU by running the following command:

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


https://drive.google.com/file/d/1Gt-kMfM9yinwUdIX-eSVaa_VVTw789vg/view?usp=sharing
https://web.stanford.edu/~jurafsky/slp3/
https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/pdf/1608.07187

Acknowledgement

This assignment is designed by Kabir Ahuja with invaluable feedback from Khushi Khandelwal, Melissa
Mitchell, Kavel Rao, and Riva Gore. Kavel Rao also helped design autograder for the homework.



1 Lexical Semantics (40 pts)

In this assignment, you will work with vector representations of words, explore intriguing and sometimes
undesirable properties of the geometry of these learned representations. There are different variants for pre-
trained word embeddings available, like word2vec and GloVe. For this homework we will be working with
GloVe vectors. GloVe is conceptually very similar to word2vec, i.e., it learns vector representation of words
such that semantically similar words tend to be closer in the embedding space. The two mainly differ on the
choice of objective to train the word vectors. We will later move on to building sentence level representations
using word embeddings and use those to build a nearest neighbor text classifier.

Deliverables:

1. Coding Exercises: The assignment is associated with Jupyter notebook.

You should complete the code blocks denoted by YOUR CODE HERE: in the Python notebook. Do
not forget to remove raise NotImplementedError() from the code blocks. To submit your code,
download your notebook as a Jupyter notebook file (CSE447_Assignment3.ipynb).

2. Write-up: Your report for §1 should be no more than four pages. However, you will most likely
be able to answer all questions within three pages.

1.1 Geometry of Word Embeddings
1.1.1 Background.

Linear Representation Hypothesis. While it makes sense for the cosine similarity between word vector
representations to correspond to semantic similarity as the way these vectors were trained were to capture
exactly this. However, what is really surprising is that linear directions in the embedding space of the word
vectors often corresponds to meaningful concepts (syntactic or semantic), as first observed by Mikolov et
al. (2013). For example, what they found was that difference between embeddings for ‘king’ and ‘queen’ is
almost same as the difference between embeddings for ‘man’ and ‘woman’. The vector difference between
embeddings of ‘king’ and ‘queen’, v(king) — v(queen), can be thought as a direction representing the male
to female gender direction, i.e., v(woman) & v(king) — v(queen) + v(man). They also found other concept
directions like singular to plural, v(queens) =~ v(kings) — v(king) + v(queen). This idea that higher-level
concepts are represented linearly as directions in the embedding space is called the linear representation
hypothesis. This property is puzzling because the models were not trained to achieve such behavior. For
readers curious about understanding an explanation of this phenomenon, we recommend checking Allen and
Hospedales (2019).

Bias in Word Embeddings and WEAT. Word embeddings trained on large text corpora while capture
useful semantic relationships between words, also learn societal biases present in their training data. Caliskan
et al. (2017) found human-like semantic biases in trained word vectors like GloVe, e.g., African American
names were found to be significantly closer (in the embedding space) to unpleasant terms (e.g., sickness,
accident, abuse) than European American names, which were closer to pleasant terms (e.g., love, peace,
health). They propose the Word Embedding Association Test (WEAT) to measure such biases. The test
is based on the Implicit Association Test (IAT) from psychology. Applied to word vectors, it considers
two sets of target words X and Y (e.g., flower names: ‘marigold’, ‘poppy’, ‘azalea’ and insect names: ‘ant’,
‘caterpillar’, ‘flea’) and two sets of attribute words A and B (e.g., pleasant terms: ‘love’, ‘peace’, ‘health’, and
unpleasant terms: ‘sickness’, ‘accident’, ‘abuse’). It then measures how separated are the two distributions
of associations between the target and attribute (i.e., X’s association with A and B, and Y’s association
with A and B). More formally, it defines:

meangcx s(z, A, B) — meanycy s(y, A, B)
std-devyexuy s(w, A, B)

effect-size =

b


https://nlp.stanford.edu/projects/glove/
https://drive.google.com/file/d/1Gt-kMfM9yinwUdIX-eSVaa_VVTw789vg/view?usp=sharing
https://aclanthology.org/N13-1090/
https://aclanthology.org/N13-1090/
https://arxiv.org/pdf/1901.09813
https://arxiv.org/pdf/1901.09813
https://arxiv.org/pdf/1608.07187
https://arxiv.org/pdf/1608.07187

WOMAN

/ AUNT QUEENS
MAN / KINGS
UNCLE
QUEEN QUEEN

KING KING

Figure 1: Example from Mikolov et al. (2013) illustrating the linear representation hypothesis.

where s(w, A, B) is given as:

-,

s(w, A, B) = mean, ¢ gcos(W, @) — meanye g (W, b),

where cos(+,-) computes the cosine similarity between two vectors and @ corresponds to the word vector for
the word w.

Unbiased representations would have an effect size close to zero, i.e., words in both target groups are
equally close to the two attribute sets of words. A higher effect size indicates higher bias.

Whenever making claims about trends in data, it is very important to consider the statistical significance
of the observations. WEAT also includes a permutation test to check the significance of the null hypothesis:
the words in set Y are closer to words in A than B, compared to X. This is done by first calculating the
test statistic:

s(X,Y,A,B) = Z s(z,A,B) — Z s(y, A, B) (1)

reX yey

This is called the differential association of words in target groups X and Y (towards the attribute sets).
Intuitively, considering the flower-insect pleasant-unpleasant example. It measures the extent to which flower
names are closer to pleasant terms than unpleasant terms, compared to insect names’ association between
the two groups.

The significance test then considers different permutations of target groups X and Y by mixing the words
between two groups, X; and Y; (hence, X; not only just contains flower words but also some insect words,
similarly Y; also containing both). The method then checks how often the differential association of these
permuted target groups is higher than the differential association of the original groups. If it happens a lot,
then probably our results are not statistically significant, but if it happens very rarely, that is evidence for
bias. More formally, the p-value of this permutation test is an estimate of the probability:

PI’(S(XZ-,Y;-,A,B) > S(vavaAvB))

We reject the null hypothesis if the p-value is very low (0.05 is a commonly used threshold), i.e., if the
difference is statistically significant.

Don’t worry if you do not understand all the math behind the permutation test. Just make sure that
you at least have a basic intuition of how it works. Feel free to come for office hours if you need help
in understanding this. We will provide you with the code to compute the p-value, you will only need to
implement the functions for s(w, A, B), effect size, and s(X,Y, A, B).


https://aclanthology.org/N13-1090/

1.1.2 Coding Exercises

Implement the following classes and functions in the notebook:

e functions cosine _similarity, euclidean distance, manhattan distance, and find_synonym (5 pts)
e function find_analogy_word (3 pts)

e functions word_association_wth_attribute weat_effect_size,
and target_words_diff_association_wth_attribute (10 pts)

1.1.3 Write-Up Questions
Check section 1 of CSE447_Assignment3_Writeup.pdf for detail.

1.2 From Word Embeddings to Sentence Level Embeddings

Until now we have been dealing with word-level vector representations. However, for most NLP systems must
deal with text formed into sentences or longer passages like documents. While learning the most effective
sentence level embeddings requires more advanced neural architectures, we can also use simple methods
to arrive at sentence level representations. (These are often be strong baselines to compare against more
complex methods.) One of the simplest ways to get a sentence embedding from word embeddings is to sum
word representations for all words appearing in the sentence, i.e., for a sentence s, with words w1y, -+, wy,
we have
§:ﬁ1+...+w”n

We can alternatively take a weighted sum of the word vectors, where these weights can come from
heuristics such as tfidf weights (which suppress the weights for very common words) or, as you will implement
in the coding exercise, assign different weights based on the part-of-speech tag of the word.

While this approach works reasonably well in practice for some use-cases, it is clearly very limited, as it
doesn’t really account for the structure of the sentence, and is essentially like a bag-of-words representation.
We will see how we can used transformer based pre-trained sentence level embeddings using the sentence-
transformer library, which are much more powerful as they learn contextual representations of the words in
a sentence / document. This is mainly to demonstrate the importance of richer sentence level representations
to you. You can treat them as black boxes for now.

In this part of the assignment, you will use a classic type of classifer called k-nearest neighbors (KNN).
Given a training set of labeled instances and a similarity function, with each one represented as a vector, this
classifier takes a new input z, finds the k training instances that are most similar to = (using the similarity
function), and returns the most common label in that set of k “neighbors.” The performance of this kind of
classifier depends heavily on how you represent the data (what we call embeddings in NLP), the similarity
function, and the hyperparameter k.

1.2.1 Coding Exercises.
Implement your code for following classes and functions in the notebook.

e functions get_sentence_embedding, get_sentence_similarity (3 pts)
e class GloveKNNClassifier (4 pts)

e class SentenceTransformerKNNClassifier (3 pts)

1.2.2 Write-Up Questions.
Check section 2 of CSE447_Assignment3_Writeup.pdf for detail.


https://www.overleaf.com/read/fvhhdvdkrmsh#bd2429
https://www.overleaf.com/read/fvhhdvdkrmsh#bd2429

	Lexical Semantics (40 pts)
	Geometry of Word Embeddings
	Background.
	Coding Exercises
	Write-Up Questions

	From Word Embeddings to Sentence Level Embeddings
	Coding Exercises.
	Write-Up Questions.



