
Assignment 4: N-Gram Language Models
Instructor: Noah Smith CSE 517 and 447 – Winter 2025

Due at 11:59pm PT, February 19, 2025
50 points for CSE 447 and CSE 517

In this assignment, you will learn about n-gram language models: how we train them, how we evaluate
their quality, and how to generate text using them.

You will submit both your code and writeup (as PDF) via Gradescope. Remember to specify your
collaborators (including AI tools like ChatGPT) and how they contribute to the completion of your
assignment at the beginning of your writeup. If you work on the assignment independently, please specify
so, too.

Required Deliverables

• Code Notebook: The assignment is associated with a Jupyter notebook. (CSE447 Assignment4.ipynb)
Please download the notebook as Jupyter notebook files (.ipynb) and submit them in Gradescope.

• Write-up: For written answers and open-ended reports, produce a single PDF for §1-3 and submit
it in Gradescope. We recommend using Overleaf to typeset your answers in LATEX, but other legible
typed formats are acceptable. We do not accept hand-written solutions because grading hand-written
reports is incredibly challenging.

Recommended Reading

The homework is based on chapter 3 and 5 of Jurafsky and Martin. We provide all the details necessary
to solve the homework in this handout and the notebooks, so it is not required to read the chapter to solve
the exercises. However, we recommend going through these chapters if you are confused about any concepts
that are covered in the homework.

Acknowledgement

This assignment is designed by Kabir Ahuja with invaluable feedback from Riva Gore, Khushi Khandelwal,
Melissa Mitchell, and Kavel Rao. Kavel Rao also helped design autograder for the homework.

1

https://drive.google.com/file/d/1aHhmXqOrgY8YqCnQxfNg-tyq3gSyptt3/view?usp=sharing
https://web.stanford.edu/~jurafsky/slp3/

1 N-Gram Language Models (50 Points for both CSE 447 and
CSE 517)

In this assignment, you will implement and experiment with n-gram language models. N-gram language
models are the simplest kind of language model. They make a simplifying assumption that the probability
of a word in a sequence only depends on the past n− 1 words in the sentence. In this assignment, you will
learn:

• How to train word-level unigram and n-gram language models on text data

• Evaluating the quality of a language model by computing perplexity

• How to sample text from an n-gram language model

• How to implement Laplace smoothing

• How to implement interpolation

We will be working with Shakespeare plays data from Andrej Karpathy’s blog post on recurrent neural
networks.

Notebook: We have designed this part with the following Python notebook: CSE447 Assignment4.ipynb.
Please make a copy for yourself by navigating to File → Save a copy in Drive. Alternatively, when
attempting to save, Google Colab will prompt you to save a copy in your own drive. Make your way through
the notebook and implement the classes and functions as specified in the instructions. All the data necessary
for this assignment can be downloaded within the notebook itself.

Deliverables:

1. Coding Exercises: You should complete the code blocks denoted by YOUR CODE HERE: in the Python
notebook. Do not forget to remove raise NotImplementedError() from the code blocks.

2. Write-up: Your report for §1 should be no more than four pages. However, you will most likely
be able to answer all questions within three pages. Note that the notebook also lists the same write-up
questions which we do below, but those should be answered in the write-up pdf only and not in the
notebook.

1.1 Unigram Language Models (11 points)

We start by implementing unigram language models, the simplest variant of n-gram models – simply learn
the distribution over words in the corpus. Recall from the lectures that for a text sequence of terms
w1, w2, · · · , wn, unigram language models, the probability of the sequence is given as

P (w1, w2, · · · , wn) = P (w1)P (w2) · · ·P (wn)

where P (wi) is simply the frequency of the word wi in the training corpus.
Training a unigram model corresponds to calculating the relative frequencies of each word in the corpus,

i.e.,

p(wi) =
C(wi)

n
where C(wi) is the count of word wi in the training data and n is the total number of words in the training
dataset.

Recall from lecture that to ensure the probabilities over sequences sum to one, you need to include a
special “stop” symbol at the end of every training sequence. This means that C(stop) will be equal to
the number of sequences in the training data, and some probability mass will be held for stopping (ending
a sequence).

2

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://drive.google.com/file/d/1aHhmXqOrgY8YqCnQxfNg-tyq3gSyptt3/view?usp=sharing

Evaluating Unigram Language Models using Perplexity. Now that we have trained our first lan-
guage model, our next job is to evaluate how well it fits the training text and how well it generalizes to unseen
text. The most commonly used metric for evaluating the quality of a language model is perplexity. Recall
from the lecture that the perplexity of a language model on a test dataset measures the (inverse) probability
assigned by the language model to the test dataset, normalized by the number of words (or tokens). A lower
perplexity indicates a higher probability assigned to the text in the test dataset, and hence better quality.

perplexity(W) = P (w1w2 · · ·wn)
−1
n = n

√
1

P (w1w2 · · ·wn)

where W is a test set with n words w1w2 · · ·wn. Remember that the set sequence needs to include a stop
symbol at the end of each sequence, and factor in its probability (and it also counts toward “n”).

It is useful to calculate perplexity in log space to avoid numerical issues:

perplexity(W) = exp

(
− logP (w1w2 · · ·wn)

n

)
When we have multiple sentences in the corpus and assume sentences to be independent, if m is the

number of sentences, we can write:

perplexity(W1:m) = exp

(
−
∑m

i=1 logP (wi
1w

i
2 · · ·wi

ni
)∑m

i=1 ni

)
where Wi is a sentence in the corpus with words wi

1, w
i
2, . . . , w

i
ni

and ni is the number of words in Wi. Note
that wi

ni
will always be the stop symbol.

Note that, just like assuming words are independent is a mismatch with reality, sentences are not (in
general) independent of each other. In future homework assignments, we will drop this assumption as we
build more powerful models.

Sampling from a Unigram Language Model Now that we have trained and evaluated our unigram
LM, we are ready to generate some text from it. To sample text from an n-gram language model given prefix
words w1, w2, · · · , wn, we sequentially sample the next token from the n-gram probability distribution given
the previous words, i.e.,

wn+1 ∼ P (wn+1 | w1, · · · , wn)

For a unigram language model, the above equation simplifies to:

wn+1 ∼ p(wn+1)

1.1.1 Coding Exercises (8 points).

Implement the following functions in Part 1 (word-level unigram language models) of the notebook.

• function add eos

• function train word unigram (2 points)

• function eval ppl word unigram (2 points)

• functions replace rare words wth unks and eval ppl word unigram wth unks (2 points)

• function sample from word unigram (2 points)

1.1.2 Write-Up Questions (3 points)

Check section 1 of CSE447 Assignment4 Writeup.pdf for detail.

3

https://www.overleaf.com/read/htgfttvtzvzr##9ed782

1.2 Longer N–Gram Language Models (12 Points)

We will now implement language models that make use of the preceding text to model the distribution of
each word. Recall from the lectures for an n-gram language model with n > 1, the distribution of a sequence
of tokens w1, w2, · · · , wn is given as

P (w1, w2, · · · , wn) =

n∏
k=1

p(wk | wk−N+1, · · · , wk−1)

For example, for a bigram model (N = 2), the expression becomes

P (w1, w2, · · · , wn) =

n∏
k=1

p(wk | wk−1)

In general, the distribution of a token depends on the immediately preceding N − 1 tokens in the sequence.
The heart of training an n-gram language model is to estimate the conditional distributions p(wk |

wk−N−1, · · · , wk−1). Recall from the lectures that the conditional distributions can be estimated as:

P (wk | wk−N−1, · · · , wk−1) =
C(wk−N−1 · · ·wk−1wk)∑
w∈V C(wk−N−1 · · ·wk−1w)

=
C(wk−N−1 · · ·wk−1wk)

C(wk−N−1 · · ·wk−1)

where C(wk−N−1 · · ·wk−1w) is the number of times the token sequence wk−N−1 · · ·wk−1w appears in the
corpus, and V is the vocabulary of the n-gram model (fixed in advance). As before, wk will sometimes be
the stop symbol. For N ≥ 2, we also need to include special start symbols in the preceding token context.
One way to accomplish this is to apprend N − 1 start symbols before every sequence, before tallying the
counts. For example, if we are building a trigram model, the training sequence
We will now implement models that use the preceding text to model the distribution of each word .

should be treated as
start start We will now implement models that use the preceding text to model the distribution of each word . stop

and there are 19 different trigrams whose counts will be increased by this sequence; you don’t need to model
p(start | context). (We assume in this example that the period at the end is a separate token.)

1.2.1 Coding Exercises (10 points).

Implement the following functions and classes in Part 2 (N(>1)-Gram Word-Level Language Models) of the
notebook.

• function process text for Ngram

• class WordNGramLM (10 points)

1.2.2 Write-Up Questions (2 points).

Check section 2 of CSE447 Assignment4 Writeup.pdf for detail.

1.3 Smoothing and Interpolation in N-Gram LMs (27 points)

One issue with using n-gram language models is that any finite training corpus is bound to miss some n-
grams that will appear in the test set. If we use maximum likelihood estimation (as we hae done so far in
this assignment), the model assigns zero probability to such n-grams, leading to probability of the entire test
set to be zero and hence infinite perplexity values that we observed in the previous exercise.

The standard way to deal with zero-probability n-gram tokens is to use smoothing algorithms. Smoothing
algorithms shave off a bit of probability mass from some more frequent events and give it to unseen events.
Research over the past thirty years has produced many moothing algorithms for n-gram language models
For this assignment we will focus on (i) Laplace smoothing and (ii) interpolation.

4

https://www.overleaf.com/read/htgfttvtzvzr##9ed782

Laplace and Add-λ Smoothing. The simplest smoothing algorithm is Laplace smoothing. It adds one
to the count of each possible n-gram, so that there is no zero-probability n-gram in the test data. For a
bigram model, the expression for the Laplace-smoothed distribution is given by

PLaplace(wk | wk−1) =
C(wk−1wk) + 1∑

w∈V(C(wk−1wk) + 1)
=

C(wk−1wk) + 1

C(wk−1) + |V|

The expressions are similar for other values of N .
Laplace smoothing is also called “add-one” smoothing. A generalization of Laplace smoothing is “add-λ”

smoothing with λ > 0. The expression for the add-λ-smoothed distribution for the bigram language model
is given by:

Padd-λ(wk | wk−1) =
C(wk−1wk) + λ∑

w∈V(C(wk−1w) + λ)
=

C(wk−1wk) + λ

C(wk−1) + λ|V|

Language Model Interpolation. An alternate to smoothing that often works well in practice is inter-
polating between different language models. Let’s say we are trying to compute P (wn | wn−2wn−1), but we
have no examples of the particular trigram wn−2wn−1wn in the training corpus. We can instead estimate its
probability by using the bigram probability P (wn | wn−1). If there are no examples of the bigram wn−1wn

in the training data either, we use the unigram probability P (wn). A simple way to make sure that the
trigram gets some probability is to interpolate between the three distributions:

p̂(wk | wk−2wk−1) = λ1p(wk) + λ2p(wk | wk−1) + λ3p(wk | wk−2wk−1)

where λ1 + λ2 + λ3 = 1 (and each λi is nonnegative). We can similarly write expressions for other n-gram
LMs.

But how do we choose the values of different λi? We choose these values by tuning them on a held
out data, i.e., the development set, very similar to tuning hyperparameters for a machine learning model.
(Tuning them on the training set, i.e., only on trigrams seen in the training set, would lead to an optimal
value of λ3 = 1, which defeats the purpose of smoothing. Tuning them on the test set would be cheating!)

1.3.1 Coding Exercises (20 points).

Implement the following functions and classes in Part 3 (Smoothing and Interpolation) of the notebook.

• class WordNGramLMWithAddKSmoothing (10 points)

• class WordNGramLMWithInterpolation (10 points)

1.3.2 Write-Up Questions (7 points).

Check section 3 of CSE447 Assignment4 Writeup.pdf for detail.

5

https://www.overleaf.com/read/htgfttvtzvzr##9ed782

	 N-Gram Language Models (50 Points for both CSE 447 and CSE 517)
	Unigram Language Models (11 points)
	Coding Exercises (8 points).
	Write-Up Questions (3 points)

	Longer N–Gram Language Models (12 Points)
	Coding Exercises (10 points).
	Write-Up Questions (2 points).

	Smoothing and Interpolation in N-Gram LMs (27 points)
	Coding Exercises (20 points).
	Write-Up Questions (7 points).

