Assignment 6: Natural Language Generation with language models
Instructor: Noah Smith CSE 517 and 447 — Winter 2025

Due at 11:59pm PT, March 12, 2025.
30 points for CSE 447 (+ 10 points extra credit) / 50 points for CSE 517

This assignment will focus on natural language generation using neural language models and learn to
implement various decoding algorithms discussed in the class to generate text. It also consists of knowledge
distillation, i.e., using a bigger teacher language model to generate data which is used to finetune a smaller
language model and improve its performance.

You will submit both your code and writeup (as PDF) via Gradescope. Remember to specify your
collaborators (including AI tools like ChatGPT) and how they contribute to the completion of your
assignment at the beginning of your writeup. If you work on the assignment independently, please specify
so, too.

Required Deliverables

e Code Notebook: The assignment is associated with a Jupyter notebook. (CSE447_Assignment6.ipynb)
You need to submit the .ipynb notebooks and not .py scripts. On Google Colab you can do
so by File — Download — Download .ipynb. Please comment out any additional code you
had written to solve the write-up exercises before submitting on gradescope to avoid
timeouts.

e Write-up: For written answers and open-ended reports, produce a single PDF for them and submit
it in Gradescope. We recommend using Overleaf to typeset your answers in ITEX, but other legible
typed formats are acceptable. We do not accept hand-written solutions because grading hand-written
reports is incredibly challenging.

Recommended Reading

The homework is based on lectures, so the lecture slides should be your best resource. For more detailed
reading we recommend checking chapters 9 and 10 of Jurafsky and Martin. We also recommend checking
Patrick von Platen’s blog post on decoding algorithms.

Required Compute

All of the exercises will require you to use a GPU to run your code. We have tested the reference implemen-
tations on the free tier T4 GPU on Colab and you should be able to use it to solve the exercises. The most
compute-intensive exercise is §1.2. If you face issues with getting things done on Colab, you should be able
to use the provided GCP credits for the homework. We will share details on how to redeem these credits
and use GCP for the homework. If you run into any issues with the compute please contact the staff.

Acknowledgment

This assignment was designed by Kabir Ahuja with invaluable feedback from Khushi Khandelwal, Melissa
Mitchell, and Kavel Rao. §1.1 of this homework is adapted from the assignments created by Yegor Kuznetsov,
Liwei Jiang, Jaechun Jung, and Gary Jiacheng Liu.
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https://web.stanford.edu/~jurafsky/slp3
https://huggingface.co/blog/how-to-generate

1 Natural Language Generation (30 pts + 10 pts bonus for CSE
447, 50 pts for CSE 517)

In this part of the homework, you will learn about generating text from neural language models using
different decoding algorithms. We will also cover (optional for CSE 447 students) how to finetune language
models and specifically show case it through knowledge distillation.

1.1 Decoding Algorithms (30 pts)

You will implement and experiment with various decoding algorithms for language generation. In particular,
we will focus on basic decoding techniques like greedy decoding, random sampling, temperature sampling,
and top-p/top-k sampling. If you have used any modern LM systems like ChatGPT, these are the decoding
algorithms that these models use to generate text.

1.1.0 Set Up Evaluation Metrics

Dataset In this assignment, we focus on the open-ended story generation task (data available here). This
dataset contains prompts for story generation, modified from the ROCStories dataset.

Evaluation Metrics

e Fluency: The CoLA classifier is a RoBERTa-large classifier trained on the CoLA corpus (Warstadt
et al., 2019), which contains sentences paired with grammatical acceptability judgments. We will use
this model to evaluate fluency of generated sentences.

e Diversity: The Count of Unique N-grams is used to measure the diversity of the generated
sentences.

e Naturalness: Perplexity of generated sentences under the language model is used to measure the
naturalness of language. You can directly use the perplexity function from HuggingFace evaluate-metric
package for this assignment.

1.1.1 Greedy Decoding

The idea of greedy decoding is simple: select the next token as the one that receives the highest probability.
Implement the greedy() function that processes tokens in batch. Its input argument next_-—
token_logits is a 2-D FloatTensor where the first dimension is batch size and the second dimension is the
vocabulary size, and you should output next_tokens which is a 1-D LongTensor where the first dimension
is the batch size.

The softmax function is monotonic—in the same vector of logits, if one logit is higher than the other, then
the post-softmax probability corresponding to the former is higher than that corresponding to the latter.
Therefore, for greedy decoding you won’t need to actually compute the softmax.

1.1.2 Vanilla Sampling, Temperature Sampling

To get more diverse generations, you can randomly sample the next token from the distribution implied
by the logits. This decoding is called sampling, or vanilla sampling (since we will see more variations of
sampling). Formally, the probability of for each candidate token w is

exp z(w)

wey €xp z(w’)

p(w) = 5


https://huggingface.co/datasets/Ximing/ROCStories
https://cs.rochester.edu/nlp/rocstories/
https://huggingface.co/cointegrated/roberta-large-cola-krishna2020
https://huggingface.co/spaces/evaluate-metric/perplexity
https://huggingface.co/spaces/evaluate-metric/perplexity

where z(w) is the logit for token w, and V' is the vocabulary. This probability on all tokens can be derived
at once by running the softmax function on vector z.

Temperature sampling controls the randomness of generation by applying a temperature ¢ when comput-
ing the probabilities. Formally,

exp (2(w)/1)
wev &P (2(w')/1)

p(w) = 5

where t is a hyperparameter.
Implement the sample() and temperature() functions. When testing the code we will use t = 0.8,
but your implementation should support arbitrary ¢ € (0, c0).

1.1.3 Top-k Sampling

Top-k sampling decides the next token by randomly sampling among the k candidate tokens that receive the
highest probability in the vocabulary, where k is a hyperparameter. The sampling probability among these
k candidate tokens should be proportional to their original probability implied by the logits, while summing
up to 1 to form a valid distribution.

Implement the topk() function that achieves this goal. When testing the code we will use k = 20,
but your implementation should support arbitrary k € [1, |V]].

1.1.4 Top-p Sampling

Top-p sampling, or nucleus sampling, is a bit more complicated. It considers the smallest set of top candidate
tokens such that their cumulative probability is greater than or equal to a threshold p, where p € [0,1] is a
hyperparameter. In practice, you can keep picking candidate tokens in descending order of their probability,
until the cumulative probability is greater than or equal to p (though there’s more efficient implementations).
You can view top-p sampling as a variation of top-k sampling, where the value of k varies case-by-case
depending on what the distribution looks like. Similar to top-k sampling, the sampling probability among
these picked candidate tokens should be proportional to their original probability implied by the logits, while
summing up to 1 to form a valid distribution.

Implement the topp() function that achieves this goal. When testing the code we will use p = 0.7,
but your implementation should support arbitrary p € [0, 1].

1.1.5 Evaluation

Run the evaluation cell. This will use the first 10 prompts of the test set, and generate 10 continuations
for each prompt with each of the above decoding methods. Each decoding method will output its overall
evaluation metrics: perplexity, fluency, and diversity.

Deliverables:

1. Code (20 pts, 4pts for each decoding algorithm): Implement code blocks denoted by YOUR CODE HERE:

in Section 1 of the notebook for Assignment6.

2. Write-up (10 pts): Answer the following questions in your write-up: Check section 1.1 of CSE447_-
Assignment6_Writeup.pdf for detail.

How do I know if my code is working correctly? Similar to the situation we had in homework 1 for
sample text functions, here again it is hard to automate the evaluation of the decoding algorithms due to the
issues with reproducibility during sampling. We recommend two ways to check the correctness of your code.
First, you can run the evaluation cell and check if you get numbers close to the reference values that we
provide for each decoding algorithm. Another way we recommend is to go through the write-up questions,


https://www.overleaf.com/read/hjckcgjcsdrm#04abcb
https://www.overleaf.com/read/hjckcgjcsdrm#04abcb

think of the answers that you expect for these questions and see if your implementation of the decoding
algorithms behave accordingly. E.g., for Q4, from your understanding of top-k sampling you should be able
to guess what value of k£ makes the algorithm equivalent to greedy decoding. When you choose that value of
k does your implementation returns the output which is same as the output you get when generating using
the greedy method?

1.2 [Optional for CSE 447] Knowledge Distillation (10 pts bonus for CSE 447,
20 pts for CSE 517))

In this part of the homework, you will learn how we can use knowledge distillation from a larger teacher
model to a smaller student model. Particularly, we will be focusing on the task of text summarization and
using the CNN/Daily Mail dataset. We will use Qwen2.5-1.5B-Instruct as our teacher model, which is a
1.5B parameter decoder-only mode pretrained on 18T tokens of data and then further finetuned to follow
instructions to perform different tasks (similar to something like ChatGPT). You can read more about
Qwen2.5 models here. For the student model, we will be using the GPT-2 small model, which is a 124M
parameter model.

1.2.1 Background.

Knowledge distillation (KD, sometimes just called “distillation”) is the process of transferring information
from large models into smaller ones. For many practical scenarios, it might be impossible to serve large
models, as those will have high latency and inference costs. One of the reasons why high performing
language models are so large is because they are supposed to be general purpose models with a wide range
of capabilities. However, if for a specific application, we only need one specific capability of the large model,
e.g., summarization, we can use knowledge distillation to specialize a much smaller language model towards
that particular task.

KD is not a recent idea and dates back to at least Hinton 2015. While there are many flavors to how
to distill knowledge from a large neural network (teacher model) to a smaller network (student), we will
focus on the synthetic data approach, which has become very common with LMs, because of their ability to
generate data. The idea is very simple: we start with a teacher model and use it to generate data for the
task which we want the student model to specialize towards. For example, if we want to specialize a small
model to do better summarization, we will use a large teacher model and generate summaries of a bunch of
articles using this model. The generated data is then used to finetune the smaller student model. It can be
useful to filter the synthetic data generated by the teacher model before using it to train a smaller model to
get rid of low-quality samples; see West et al. 2022, Sclar et al. 2022 and Wang et al. 2023. However, for
the purposes of this homework we will simply train the student model without any filtering.

1.2.2 Implementing Knowledge Distillation for Text Summarization.

Step 1: Set up Student Model (5 pts)

e prepare_articles_for_student_model() (2 pts): Implement this function.

In this function you format and tokenize the data so that it can be used for summarization using the
student model (GPT-2). Note that GPT-2 is a language model and inherently a language model’s job
is to predict continuations of a sequence by predicting one token at a time. To perform specific tasks
like summarization using language models, we need to prepare the data in such a format such that the
possible continuation of the sequence is the output we want (here, the summary of the article). The
GPT-2 paper found adding a “TL;DR” to the end of the article helps the model in generating better
summaries. Post formatting, you should then tokenize the formatted articles, which means breaking
the article into a list of (sub-)words and converting them into token ids corresponding to the indices
of words in the language model’s vocabulary (similar to what you did in Assignment 1). Both of these


https://huggingface.co/datasets/abisee/cnn_dailymail
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/1503.02531
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steps can be conveniently done using a single line of code using by calling the pretrained tokenizer from
Huggingface: tokenizer().

e summarize_wth_student_model() (3 pts): Implement this function.

In this function you implement the code for generating summaries using the student model by first
formatting and tokenizing the articles by calling the above function and then feeding the tokenized
inputs to the student model to generate summaries. We will be using top-p sampling for generation.
As with tokenization, generation is also very convenient using the pretrained models from Huggingface
and can be done by simply calling model.generate(). To use top-p sampling, provide the argument
top_p = <p> to the generate method.

Step 2: Set up Teacher Model (5 pts)

e prepare_articles_teacher() (2 pts): Implement this function.

Similar to student model, we will need to format and tokenize data for the teacher model. Our teacher
model (Qwen2.5-1.5B-Instruct) is an instruction-tuned language model, i.e., it was further finetuned
to follow instructions for a wide range of problems (e.g., different NLP tasks, chatbot queries like
“write me an email”). Please check Oyuang et al. if you are interested to learn more about instruction
tuning, as instruction tuning has been one of the key ideas that has lead to the success of modern LMs.
Coming back to the function implementation, you will need to format your prompt appropriately for
instruction following rather than text completion. We will do this by adding an instruction to the
beginning of each article, i.e., “Summarize the following article.” Further, we will also instruct the
model to output the summary in a specific format by appending a suffix to the end of each article, i.e.,
“Start your summary with "TL;DR:.”. This will help us easily extract the summary from the generated
response of the model. We also add something called a system prompt at the beginning of each input,
which is useful to ground the model towards a particular role or persona. Like for this problem we use
the system prompt: “You are a helpful assistant and an expert at summarizing articles.” (We add the
system prompt for you, so you don’t need to add that on your own.)

e summarize_with_teacher_model() (3 pts): Implement this function.

Similar to summarize_wth_student_model (), just uses the teacher model to summarise the articles.

e generate_synthetic_data_for_distillation(): You do NOT need to implement this function.
Calls summarize_with_teacher_model () with the articles in the training data and generate summaries
using the teacher model.

Step 3: Finetuning Student Model on Synthetic Summaries (5 pts)

e prepare_data_for_distillation() (5 pts): Implement this function.

This function formats the data in a specific way so that it can be used to finetune the student model.
You will follow pretty much the same process as you did for the student model in prepare_articles_for_student_mode.
with a few changes.

1. First we will include the summaries in the input text along with the articles. This is done because
we are now training the student model to generate summaries from the articles. Hence the format
of the input text will be <article>\nTL;DR:<summary>.

2. In the dictionary returned by the tokenizer, we now need add a new key, "labels", which contains
the labels to train the language model. For language models, the labels are the same as the input
IDs since the model is expected to generate the next word in the sequence. However, while
finetuning, we want the model to learn how to generate the summaries from the articles and we
do not care about the model learning to predict tokens in the original articles. Therefore, we


https://arxiv.org/abs/2203.02155

replace the labels for the prompt tokens with -100, which is a special token id that is used to
signal the loss function to ignore the loss for those tokens.

This process of finetuning a language model to generate output text conditioned on an input is com-
monly referred to as supervised finetuning.

e fine_tune_student_model(): You do NOT need to implement this function.

This function finetunes the student model using the Trainer API from Huggingface. Finetuning takes
roughly 5 minutes on Google Colab T4 GPU.

Deliverables:

1. Code (15 pts): Implement code blocks denoted by YOUR CODE HERE: in Section 2 of the notebook
for Assignment6.

2. Write-up (5 pts): Check section 1.2 of CSE447_Assignment6_Writeup.pdf for detail.


https://www.overleaf.com/read/hjckcgjcsdrm#04abcb
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