Scaling Language Models

Weijia Shi

CSE 517 and 447: Natural Language Processing



® Feel free to interrupt with
questions / thoughts anytime!

Some slides are adapted from previous presentations by Sean
Welleck, Yue Xiang, Niklas Muennighoff, Quentin Anthony, Liwel Jiang



Recap of Language Modeling



Autoregressive Language Modeling
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Autoregressive Language Modeling
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Why Is It Called Pretraining?

Step 2:
Fine-tuning

Step 1:
Pre-training

are composed of tiny water droplet EOS c orO

Decoder Decoder

(Transformers, LSTM, ...) (Transformers, LSTM, ...)

Clouds are composed of tiny water droplet ... the movie was ...

Abundant data; learn general language Limited data; adapt to the task

e . J -, S

? “Pre”training happens before training (fine-tuning)! ‘
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Outline

e Overview of LM Pretraining
® Pretraining Data
® Pretraining Setups

e Scaling Law



Outline

e Overview of LM Pretraining



Imagine you re developing Llama

N



Overview of Llama Training

Pretraining -> Instruction Fine-tuning -> RLHF
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Verb | went to Hawaii for snorkeling, hiking, and whale _watching .
Preposition | walked across the street, checking for traffic __over__ my shoulders.
Commonsense |use knife and fork to eat steak.

Time Ruth Bader Ginsburg was bornin__ 1933 .

Location University of Washington is located at __Seattle__, Washington.

Math | was thinking about the sequence thatgoes 1, 1, 2, 3,5, 8,13,21, _34__

Chemistry Sugar is composed of carbon, hydrogen, and _oxygen __.




Why Pretraining?

Pretraining Extracts Patterns, Structures, and Semantic Knowledge from Raw Texts ,‘
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Outline

® Pretraining Data



What Matters for Pretraining Data®”

- Quantity: How much data do | have?
- Quality: Is it beneficial for training?

- Coverage: Does the data cover enough domains for the end task?



Scale Up Data Quantity

Tokens of training data

AETOER 1.4 trillion
Llama 2 1.8 trillion
Llama 3 15 trillion

Deepseek 3 15 trillion



How Large are 1T Tokens?

Physical Size (if printed)

- Average words per page: A typical page con
- Words from 1 trillion tokens: Assuming 750 bi

words per page:
- Total Pages: Approximately 1.875 billion pages.

Digital Storage
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orage.

Read 750 Billion Words: At 200 words per mi

- Reading Speed: The average reading speed is about 200-250 words per minute.
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billion minutes, or approximately 7,125 years of continuous reading.



Pretraining Data Comes From Web

* |Large snapshots of web pages.
e Extraction: HTML to text
* Filtering: filter out unwanted pages

* Deduplication: many duplicate web pages

Common
Crawl

237B
HTML pages

Extraction pg Filtering g Dedup




Extraction

e Extraction: HTML to text

* Remove boilerplate

Aggregate Acc (%)

w
W
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e Retain Latex, code, etc.

This paper concerns the quantity
<img src="https://s0.wp.com/
latex.php?latex=%7BM%28x%29..."
alt="{M(x)}" />, defined as the
length of the longest
subsequence of the numbers from

Suppose I have a smooth map
[tex] f\colon \mathbb{R}"3
\longrightarrow S%2[/tex]. If I
identify [tex]\mathbb{R}*3[/tex]
with [tex]U S = 843 = \
{(0,0,1)\}([/tex] via
stereographic projection
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Image Equations

Delimited Math
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Training tokens (billions)
— Custom — CommonCrawl
Extraction Default

Penedo et al 2024

<math>
<semantics>

<annotation ...>
{\displaystyle \mathrm {MA}
={\frac{f_{O}}{f_{E}}}}
</annotation>
</semantics>
</math>

Special Tags




Filtering

* Filter out unwanted text
* Language filter
* Repetitions

 [00 many short lines



Deduplication

* Remove duplicate content

* Fuzzy strategy: minhash



Data Quality: Model-based Selection
 Example: FineWeb-Edu [Penedo et al 2024]

» Classifier to classity pages as “educational”
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Data Quality: Model-based Filtering
 Example: FineWeb-Edu [Penedo et al 2024]

» Classifier to classify pages as “educational”

LOININNoOn

Crawl
~500k pages (page, label) Fast classifier
l data

FineWeb-Edu —
(1.4 Trillion tokens) s

Prompted 1 Train l rllter
La&gi?e FineWeb Dataset
l Fast classifier (15 Trillion tokens)

(page, label)

data




Data Coverage: Mixtures

- Training Data is a mixture of different sources

Dataset Sampling prop. Epochs Disk size
CommonCrawl  67.0% 1.10 3.3TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% PADEL 85 GB
ArXiv 2.5% 1.06 92 GB
StackExchange 2.0% 1.03 78 GB

Most model builders keep pretraining data private; Llama shared some details but not the data itself
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Pretraining Data Summary

Data Download

Internet . o
Scale : uality Filtering
Datasets Text Extraction

v

Text Reformatting Curated documents for

= LLM pre-training
Cleaning

Exact + Fuzzy
Deduplication
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® Training Setups



Architecture (Recap)
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| lama Architecture: Grouped Query Attention

Multi-head Grouped-query Multi-query
Values |
Keys
! FaX FaX 2 : 222N
Queries

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

Model Tinter Average | CNN arXiv PubMed MediaSum MultiNews WMT TriviaQA
S R R; R R: R: BLEU F1
MHA-Large 0.37 46.0 42.9 44.6 46.2 355 46.6 27.7 78.2
MHA-XXL 1.51 47.2 43.8 45.6 47.5 36.4 46.9 28.4 81.9
MQA-XXL 0.24 46.6 43.0 45.0 46.9 36.1 46.5 28.5 81.3
GQA-8-XXL | 0.28 47.1 43.5 45.4 47.7 36.3 47.2 28.4 81.6




Llama Architecture: Other Setups

params dimension 7 heads n layers Ilearningrate batch size n tokens

6.7B 4096 32 32 3.0e™4 AM 1.0T
13.0B 5120 40 40 3.0e~4 AM 1.0T
32.5B 6656 52 60 | Sem: AM 1.4T
65.2B 8192 64 80 I Sen: AM 1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.



Llama Architecture: Other Setups

params dimension 7 heads n layers Ilearningrate batch size n tokens

6.7B 4096 32 32 3.0e™4 AM 1.0T
13.0B 5120 40 40 3.0e~4 AM 1.0T
32.5B 6656 52 60 | Sem: AM 1.4T
65.2B 8192 64 80 I Sen: AM 1.4T

l Table 2: Model sizes, architectures, and optimization hyper-parameters.

' Cannot fit with 1 GPU’s memory. How to train? '

=~ . NP N



Bottlenecks of Training Big Models

» Bottleneck 1: Iteration time &
» Each training sample takes longer to propagate through more
parameters

- Bottleneck 2: Processor Memory
- Billions of parameters and 2 bytes each, GPUs have comparatively
ittle memory!



Parallelization Strategies

Data Parallelism



Parallelization Strategies

Data Parallelism Model Parallelism

Hybrid (Model and Data) Parallelism



Parallelization Strategies

Model Parallelism

Data Parallelism

P---------------

Machine 2

llllllllll

Machine 1

id (Model and Data) Parallelism

Hybr

Machine 4

Machine 3

Machine 2

h——————J

Machine 1




Sequential Training

- At each training iteration:
» Take batch size b training samples from dataset
» Run a forward pass on each sample and compute each sample’s loss
» Run a backward pass and calculate the gradient
» Update parameters via gradient

(Updated)
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. oss Curve

2.2
—— LLaMA 7B

2.1 —— LLaMA 13B
A 2.0- —— LLaMA 33B
S \ —— LLaMA 65B
o) 1.9- “
= \\
C 1.8- .‘.
O \-.
e

1.6-

1.5

0 200 400 600 800 1000 1200 1400
Billion of tokens

Figure 1: Training loss over train tokens for the 7B,
13B, 33B, and 65 models. LLaMA-33B and LLaMA-
65B were trained on 1.4T tokens. The smaller models
were trained on 1.0T tokens. All models are trained
with a batch size of 4M tokens.




LM Performance: More Compute, Better Results

TriviaQA HellaSwag NaturalQuestions

Accuracy
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Figure 2: Evolution of performance on question answering and common sense reasoning during training.




Llama Family

# params| 7B 13B | 33B @ 65B 7B 13B  34B 70B 8B 70B
# training tokens| 1T 1T | 1.4T | 14T | 2T el 2T S 15T 15T
hidden embed dim 4096 5120 6656 8192 4096 5120 8192 4096 8192
# attn heads| 32 40 52 64 32 40 64 32 64
# attn layers| 32 40 60 80 32 40 80 32 80
attention MHA MHA MHA MHA MHA MHA GQA GQA GQA GQA
# kv heads, 32 40 52 64 32 40 8 8 8
P i"te’med;‘;‘:: 11008 13824 17920 22016 11008 13824 28672 14336 28672
context 2048 4096 8192
tokenizer BPE sentencepiece BPE sentencepiece BPE tiktoken
token vocabulary 32000 32000 128256
fine-tuned models - "éi';:fl;?nhaa: /i‘lljzl gggg)) Llama-3-Instruct (Apr 2024)

BPE: Byte Pair Encoding
MHA: Multi-Head Attention
GQA: Grouped-Query Attention

| Not released by Meta



Try Training Llama By Yourself N f

github.com/facebookresearch/lingua

Meta Lingua

Mathurin Videau®, Badr Youbi Idrissi* Daniel Haziza, Luca Wehrstedt, Jade Copet, Olivier Teytaud, David Lopez-
Paz. *Equal and main contribution

Meta Lingua is a minimal and fast LLM training and inference library designed for research. Meta Lingua uses
easy-to-modify PyTorch components in order to try new architectures, losses, data, etc. We aim for this code to
enable end to end training, inference and evaluation as well as provide tools to better understand speed and
stability. While Meta Lingua is currently under development, we provide you with multiple apps to showcase how

to use this codebase.

On H100, 7B ~— train.py

MMLU 48%
|~ eval.py
Tokens
9600 e — data.py
~ transformer.py
45% 53.;5,',”,, |~ distributed.py
|— checkpoint.py
S~ Loss 2.36 -
; . — optim.py
24h - 256 GPUs - 7B model Mlnlmal _)
MMLU 48% ARCChal 50% CSQA 63% TQA 51% *** 00 Meta Lingua
Fully Eully Automatic probing throughout model .. and training
Sharded Compilable
Tensor Fully

Parallelism Reproducible Layers Train step

v




Outline

e Scaling Law



Pretraining and Compute

* (Goal: get a better pretrained model by “adding
more compute”

 “The biggest lesson that can be read from 70
years of Al research is that general methods that
leverage computation are ultimately the most
effective, and by a large margin.”

- The Bitter Lesson, Richard Sutton 2019



What Is Compute?

a X Model 8

& y Training
size & data

B Training W
- compute ===

Model size Training data
(# parameters)

Training compute Resources
(# tokens) (FLOPs)
C ~ 6ND

N: number of model parameters
D: number of tokens

C: compute; floating point operations (FLOPS)



What Is Compute?

Model s Training Training
“ size & X data - compute _%
Model size Training data | Training compute |Resources
(# parameters) (# tokens) (FLOPs)

o~~~ BERT-base (2018) 109M 250B 1.6e20 64 TPU v2 for 4 days
c (16 V100 GPU for 33 hrs)
@ GPT-3 (2020) 175B 300B 3.1e23 ~1,000x BERT-base
G PaLM (2022) 540B 780B 2.5e24 6k TPU v4 for 2 months



How important is scaling? (Return)

Test Loss
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Test loss predictably improves with more compute

Scaling laws for neural language models (2020)



https://arxiv.org/abs/2001.08361

Scaling Laws

Given a fixed compute budget, can we predict the optimal test loss?

Train models of different sizes and numbers of tokens

i0-® 10-7 10-5 10-3 10-! 10!

Scaling laws for neural language models (2020)



https://arxiv.org/abs/2001.08361

Predictive formula

We can estimate loss (L) given model size (N), training data (D), and
learned constants:

A B
LIN,D)=—+ —+FE
WD) =Natpst
Fitting the constants, yields: @ ~ IB

l.e. equal scaling of N and D.

Training compute-optimal large language models (2022)



https://arxiv.org/abs/2203.15556

Using Scaling Laws

e Scaling laws are also used to choose hyper parameters
 Basic idea:
 Run many experiments at a small scale

 Use a scaling law to estimate the best hyper parameter for a
large-scale model / training run



Example: choose model size and # of tokens
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“Optimal”: best loss for a given compute budget (FLOPSs)



Example: choose batch size, learning rate

Optimal Batch Size (Tokens)

2260 % 7B MHA 2T Token
* 67B GQA 2T Token
224 //,a’*1’9.7M
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Non-Embedding Training FLOPs

Optimal batch size

8e-3
* 7B MHA 2T Token
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8 oooooocr)@cpoo
% 1e-3 © o @@ o
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Non-Embedding Training FLOPs

Optimal learning rate



Limits of Scaling



Limits of Scaling

® Limits on data: Modern LLMs are trained on basically the
entire internet - we can't find 10 new internets out of nowhere

® Limits on compute: Big tech companies can’t continue to
10x their model sizes for much longer



Limits on Data: Data Is Running Out

H
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[
—

—_—
-
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- Stock of data

Median date of
full stock utilization

Effective stock (number of tokens)

1012 —— Dataset size projection
® p Median date of
GE'T'-'?S — == full stock utilization
/ (5x overtraining)
10t 7
2020 2022 2024 2026 2028 2030 2032 2034

Year



Limits on Data: Restrictions in Use

Public data is always usable, but proprietary/licensed data is not

®|8N5p+ % L

Public Data Proprietary Data



Limits on Data: Restrictions in Use

100%
90%
80% -
70% -
60% -
50% -
40% -
30%-
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0%

¢ GDPRAd.|

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

ToS Restrictions
® No Crawling & AI ¢ No Crawling @ No Al © Non-Commercial Use Non-Compete No Re-Distribution

Conditional Use @ Unrestricted Use No Terms Pages

Terms of Service pages have imposed more anti-crawling and now anti-Al
restrictions



Limits-on-Data: Synthetic Data

By 2030, Synthetic Data Will Completely Overshadow Real Data in Al Models

-~

« Artificially Generated Data

« Generated From Simple
Rules, Statistical Modelling,
Simulation and Other
Techniques

Future Al

Data Used

for Al Today's Al

» Obtained From Direct
Measurements

« Constrained by Cost, Logistics,
Privacy Reasons

2020 2030
Time

Gartner



Limits on Compute: Pretraining is Centralized

® Current pretraining requires GPUs' communications

® But one data center can hold fixed amount of GPUs

(@)
(@
(@,

1(©
I (

e

I_

//T\\
I\ \
B I | &

User 1 User 2 User 3 User4 User 5

Global Data Global Model
~ | (Data J

0
(©
(@

\ (((

(a) centralized learning (can be outsourced learning).



Limits-on-Gompute— Decentralized Training

® Current pretraining requires GPUs' communications

® But one data center can hold fixed amount of GPUs

@ Global Model
Exchange Model
EICINEES

] &

User 1 User 2 User 3 User 4 User 5
= o t = oM | ocal Models

g Local Data

Global Data Global Model

I

(R
(((e”f;f{?ffi

User 1 User 2 User 3 User4 User 5

(a) centralized learning (can be outsourced learning). (b) distributed learning



Questions?



