Scaling Language Models

Weijia Shi

CSE 517 and 447: Natural Language Processing

Feel free to interrupt with questions / thoughts anytime!

Some slides are adapted from previous presentations by Sean Welleck, Yue Xiang, Niklas Muennighoff, Quentin Anthony, Liwei Jiang

Recap of Language Modeling

Autoregressive Language Modeling

i=1

Autoregressive Language Modeling

Step 1: **Pre-training**

Abundant data; learn general language

Limited data; adapt to the task

"Pre"training happens before training (fine-tuning)!

Overview of LM Pretraining

Pretraining Data

Pretraining Setups

Scaling Law

Outline

Overview of LM Pretraining

Pretraining Data

Pretraining Setups

Scaling Law

Outline

Imagine you're developing Llama

Overview of Llama Training

Pretraining -> Instruction Fine-tuning -> RLHF

Why Pretraining?

Verb	l went to Hawaii for si
Preposition	I walked across the st
Commonsense	I use <mark>knife</mark> and
Time	Ruth Bader Ginsburg
Location	University of Washing
Math	I was thinking about t
Chemistry	Sugar is composed o

snorkeling, hiking, and whale watching.

of carbon, hydrogen, and <u>oxygen</u>.

Why Pretraining?

Pretraining Extracts Patterns, Structures, and Semantic Knowledge from Raw Texts

Overview of LM Pretraining

Pretraining Data

Training Setups

Scaling Law

Outline

What Matters for Pretraining Data?

- **Quantity:** How much data do I have?
- **Quality**: Is it beneficial for training?
- Coverage: Does the data cover enough domains for the end task?

Scale Up Data Quantity

Llama 1

Llama 2

Llama 3

Deepseek 3

Tokens of training data

1.4 trillion

1.8 trillion

15 trillion

15 trillion

How Large are 1T Tokens?

Physical Size (if printed)

- Average words per page: A typical page contains about 300-500 words. - Words from 1 trillion tokens: Assuming 750 billion words, and an average of 400
- words per page:
 - Total Pages: Approximately 1.875 billion pages.

Digital Storage

terabytes (TB) of storage.

Reading Time

- Reading Speed: The average reading speed is about 200-250 words per minute. - Time to Read 750 Billion Words: At 200 words per minute, it would take about 3.75 billion minutes, or approximately 7,125 years of continuous reading.

- Character Encoding: Assuming each character takes up 1 byte (in a simple encoding like ASCII), 1 trillion tokens (4 trillion characters) would require about 4

Pretraining Data Comes From Web

- Large snapshots of web pages.
 - Extraction: HTML to text
 - Filtering: filter out unwanted pages
 - Deduplication: many duplicate web pages

Extraction

- Extraction: HTML to text
 - Remove boilerplate
 - Retain Latex, code, etc.

This paper concerns the quantity $[tex]f\colon \mathbb{R}^3$, defined as the with $[tex]US = S^3 - \setminus$ length of the longest subsequence of the numbers from {(0,0,1)\}[/tex] via stereographic projection

Image Equations

Filtering

٠

. . .

- Filter out unwanted text
 - Language filter
 - Repetitions
 - Too many short lines

Deduplication

- Remove duplicate content
 - Fuzzy strategy: *minhash*

Data Quality: Model-based Selection

- Example: FineWeb-Edu [Penedo et al 2024]
 - Classifier to classify pages as "educational"

Data Quality: Model-based Filtering

- Example: FineWeb-Edu [Penedo et al 2024]
 - Classifier to classify pages as "educational"

Data Coverage: Mixtures

Training Data is a mixture of different sources

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

Most model builders keep pretraining data private; Llama shared some details but not the data itself

Pretraining Data Summary

Overview of LM Pretraining

Pretraining Data

Training Setups

Scaling Law

Outline

Architecture (Recap)

Llama Architecture: Grouped Query Attention

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each *group* of query heads, interpolating between multi-head and multi-query attention.

Model	Tinfer	Average	CNN	arXiv	PubMed	MediaSum	MultiNews	WMT	TriviaQA
	s		R 1	R ₁	R ₁	R ₁	R ₁	BLEU	F1
MHA-Large	0.37	46.0	42.9	44.6	46.2	35.5	46.6	27.7	78.2
MHA-XXL	1.51	47.2	43.8	45.6	47.5	36.4	46.9	28.4	81.9
MQA-XXL	0.24	46.6	43.0	45.0	46.9	36.1	46.5	28.5	81.3
GQA-8-XXL	0.28	47.1	43.5	45.4	47.7	36.3	47.2	28.4	81.6

Llama Architecture: Other Setups

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

Llama Architecture: Other Setups

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

Cannot fit with 1 GPU's memory. How to train?

Bottlenecks of Training Big Models

- Bottleneck 1: Iteration time
 - Each training sample takes longer to propagate through more parameters

- Bottleneck 2: Processor Memory 4
 - little memory!

• Billions of parameters and 2 bytes each, GPUs have comparatively

Parallelization Strategies

Data Parallelism

Parallelization Strategies

Data Parallelism

Hybrid (Model and Data) Parallelism

Model Parallelism

Parallelization Strategies

Data Parallelism

Hybrid (Model and Data) Parallelism

Model Parallelism

Sequential Training

- At each training iteration:
 - Take batch size b training samples from dataset
 - Run a forward pass on each sample and compute each sample's loss
 - Run a backward pass and calculate the gradient
 - Update parameters via gradient

GPU

Model

(Updated) Model

Gradient

Loss Curve

Figure 1: Training loss over train tokens for the 7B, 13B, 33B, and 65 models. LLaMA-33B and LLaMA-65B were trained on 1.4T tokens. The smaller models were trained on 1.0T tokens. All models are trained with a batch size of 4M tokens.

LM Performance: More Compute, Better Results

Llama

Family		Lla	ma			Llar	na 2			Llar	na 3	
		Feb	2023			Jul 2	2023			Apr	2024	
# params	7B	13B	33B	65B	7B	13B	34B	70B	8B			70B
# training tokens	1T	1T	1.4T	1.4T	2T	2T	2T	2T	15T			15T
hidden embed dim	4096	5120	6656	8192	4096	5120		8192	4096			8192
# attn heads	32	40	52	64	32	40		64	32			64
# attn layers	32	40	60	80	32	40		80	32			80
attention	MHA	MHA	MHA	MHA	MHA	MHA	GQA	GQA	GQA			GQA
# kv heads	32	40	52	64	32	40		8	8			8
mip intermediate	11008	13824	17920	22016	11008	13824		28672	14336			28672
context		20	48		4096			8192				
tokenizer	BF	PE sente	encepie	се	BPE sentencepiece			BPE tiktoken				
token vocabulary		320	000		32000				128256			
fine-tuned models	-				Llama-2-Chat (Jul 2023) Code Llama (Aug 2023)			.023) 023)	Llama-3-Instruct (Apr 2024)			2024)
	BPE: B	yte Pair	Encod	ing	Not	release	ed by M	eta				
	MHA: N	/ulti-He	ad Atter	ntion								
	GQA: Grouped-Query Attentio			Attentio	n							

Try Training Llama By Yourself Image: Second se

Meta Lingua

Mathurin Videau*, Badr Youbi Idrissi*, Daniel Haziza, Luca Wehrstedt, Jade Copet, Olivier Teytaud, David Lopez-Paz. *Equal and main contribution

Meta Lingua is a minimal and fast LLM training and inference library designed for research. Meta Lingua uses easy-to-modify PyTorch components in order to try new architectures, losses, data, etc. We aim for this code to enable end to end training, inference and evaluation as well as provide tools to better understand speed and stability. While Meta Lingua is currently under development, we provide you with multiple apps to showcase how to use this codebase.

Overview of LM Pretraining

Pretraining Data

Training Setups

Scaling Law

Outline

Pretraining and Compute

- Goal: get a better pretrained model by "adding more compute"
 - effective, and by a large margin."
 - The Bitter Lesson, Richard Sutton 2019

 "The biggest lesson that can be read from 70" years of AI research is that general methods that leverage computation are ultimately the most

What Is Compute?

N: number of model parameters *D*: number of tokens C: compute; floating point operations (FLOPs)

aining data	Training compute	Resources
# tokens)	(FLOPs)	

$C \approx 6ND$

What Is Compute?

aining data # tokens)	Training compute (FLOPs)	Resources
250B	1.6e20	64 TPU v2 for 4 days (16 V100 GPU for 33 hrs)
300B	3.1e23	~1,000x BERT-base
780B	2.5e24	6k TPU v4 for 2 months

How important is scaling? (Return)

Test loss predictably *improves* with more *compute*

Scaling Laws

Train models of different sizes and numbers of tokens

Scaling laws for neural language models (2020)

Predictive formula

We can estimate loss (L) given model size (N), training data (D), and learned constants:

L(N, D) =

Fitting the constants, yields: $\alpha \approx \beta$ i.e. equal scaling of N and D.

$$\frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} + E$$

Using Scaling Laws

- Basic idea: •
 - Run many experiments at a small scale
 - large-scale model / training run

Scaling laws are also used to choose hyper parameters

Use a scaling law to estimate the best hyper parameter for a

Example: choose model size and # of tokens

"Optimal": best loss for a given compute budget (FLOPs)

Example: choose batch size, learning rate

Optimal batch size

Optimal learning rate

Limits of Scaling

Limits of Scaling

- Limits on data: Modern LLMs are trained on basically the *entire internet* we can't find 10 new internets out of nowhere
- Limits on compute: Big tech companies can't continue to 10x their model sizes for much longer

re trained on basically the new internets out of nowhere mpanies can't continue to onger

Limits on Data: Data Is Running Out

Limits on Data: Restrictions in Use

Public data is always usable, but proprietary/licensed data is not

Public Data

Proprietary Data

Limits on Data: Restrictions in Use

Terms of Service pages have imposed more anti-crawling and now anti-AI restrictions

Limits on Data: Synthetic Data

Limits on Compute: Pretraining is Centralized

- Current pretraining requires GPUs' communications
- But one data center can hold fixed amount of GPUs

(a) centralized learning (can be outsourced learning).

Limits on Compute : Decentralized Training

- Current pretraining requires GPUs' communications But one data center can hold fixed amount of GPUs

(a) centralized learning (can be outsourced learning).

(b) distributed learning

Questions?