Tokenization: How do language models see text?

Jan 27, 2025

CSE 447/517: NLP

Guest lecture from Alisa Liu

Inspiration taken from lectures of Yejin Choi, Andrej Karpathy, Sachin Kumar, Oreva Ahia

Tokenization :(

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

- Why can't LLM spell words? Tokenization.
- Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
- Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
- Why is LLM bad at simple arithmetic? Tokenization.
- Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
- Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
- What is this weird warning I get about a "trailing whitespace"? Tokenization.
- Why the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
- Why should I prefer to use YAML over JSON with LLMs? Tokenization.
- · Why is LLM not actually end-to-end language modeling? Tokenization.
- What is the real root of suffering? Tokenization.



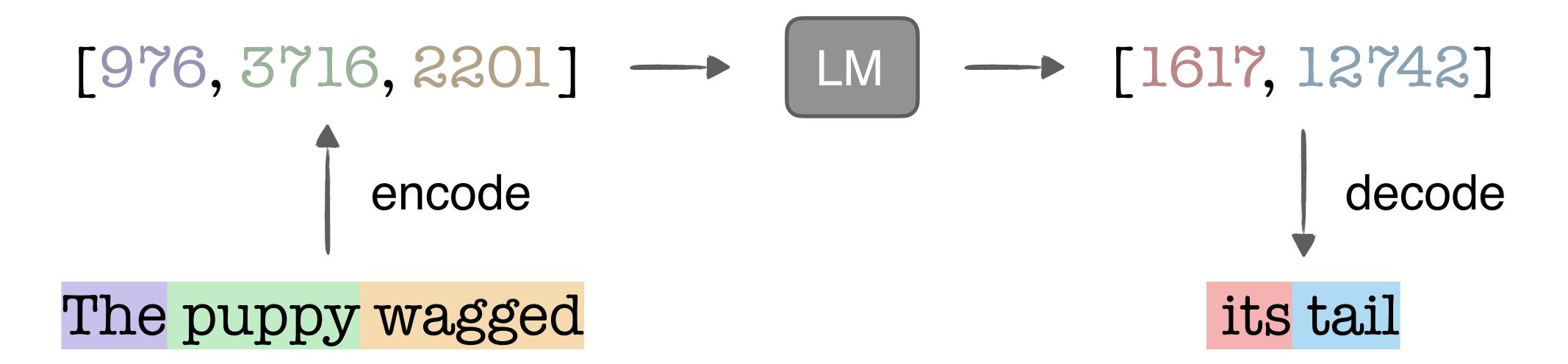
Let's build the GPT Tokenizer

Outline

- 1. What is tokenization?
- 2. Word-level and character-level tokenizers
- 3. Subword-level tokenizers
- 4. BPE: Byte Pair Encoding
- 5. Variations on BPE

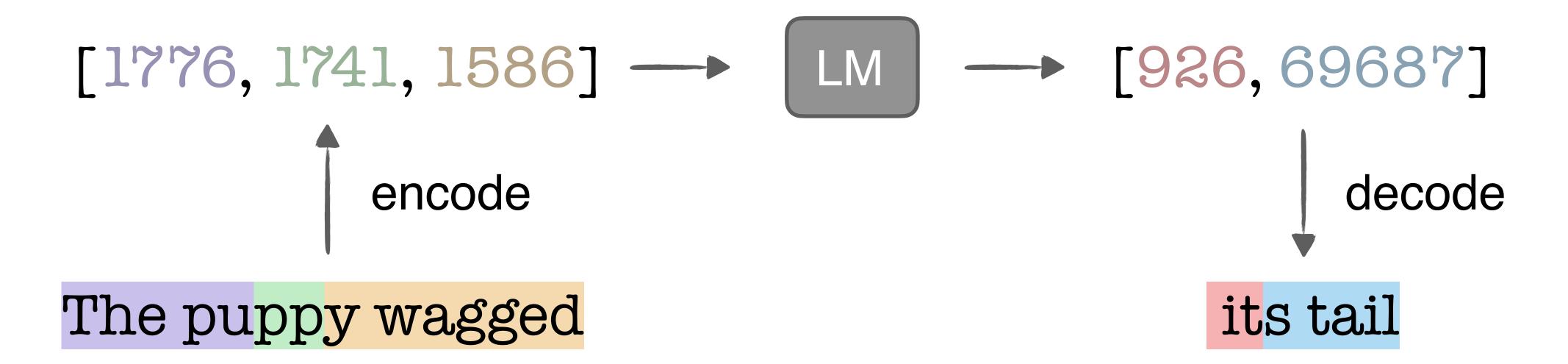
Token = a "word" unit with its own embedding representation

A tokenizer translates between text and a sequence of tokens that a language model (LM) learns representations over



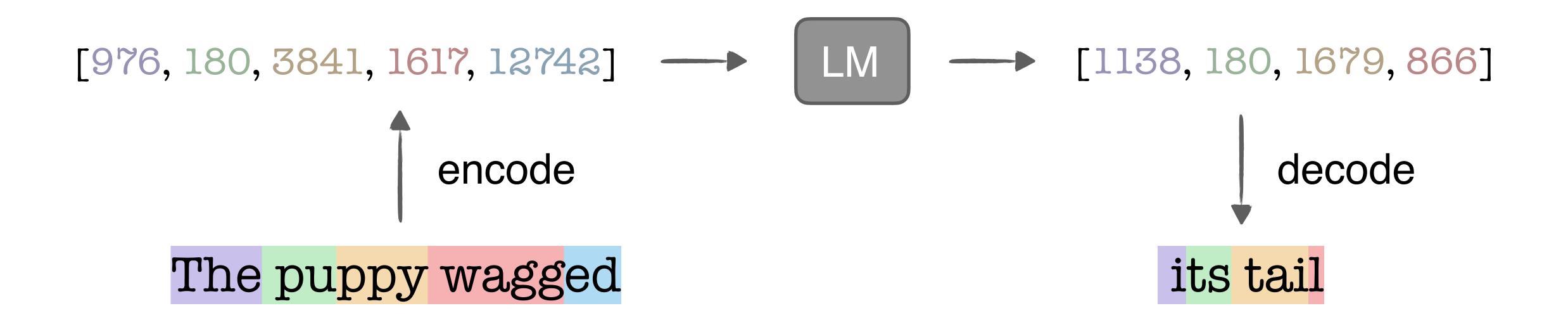
Token = a "word" unit with its own embedding representation

A tokenizer translates between text and a sequence of tokens that a language model (LM) learns representations over



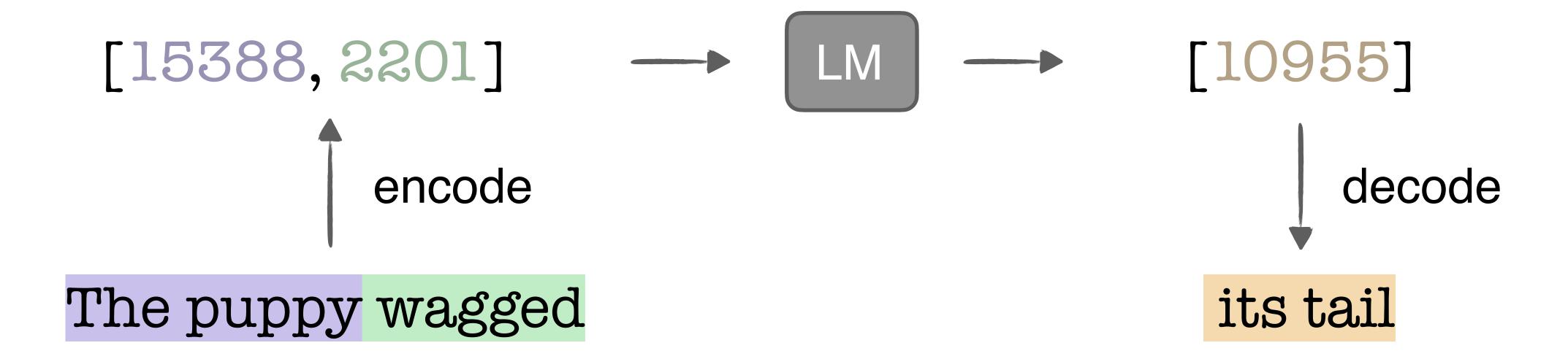
Token = a "word" unit with its own embedding representation

A tokenizer translates between text and a sequence of tokens that a language model (LM) learns representations over

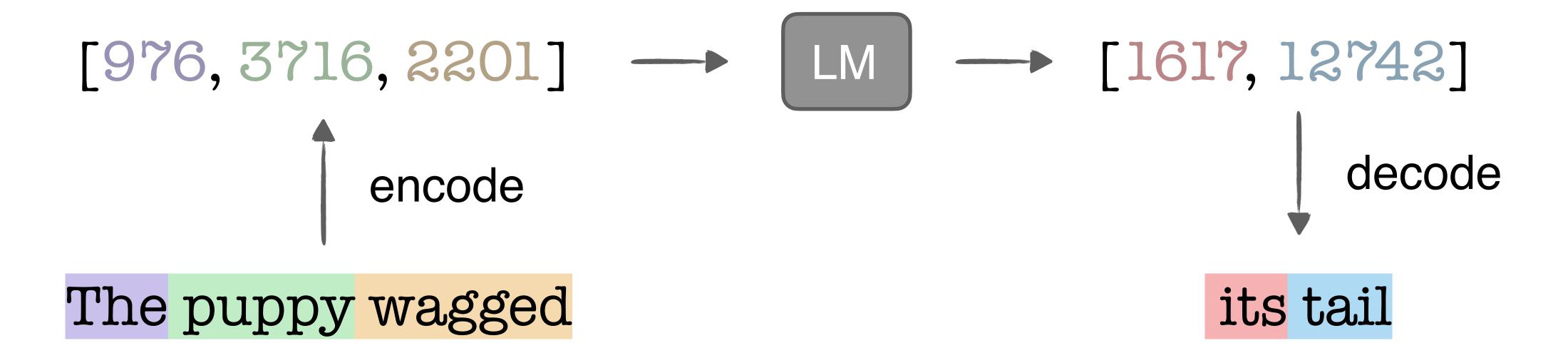


Token = a "word" unit with its own embedding representation

A tokenizer translates between text and a sequence of tokens that a language model (LM) learns representations over

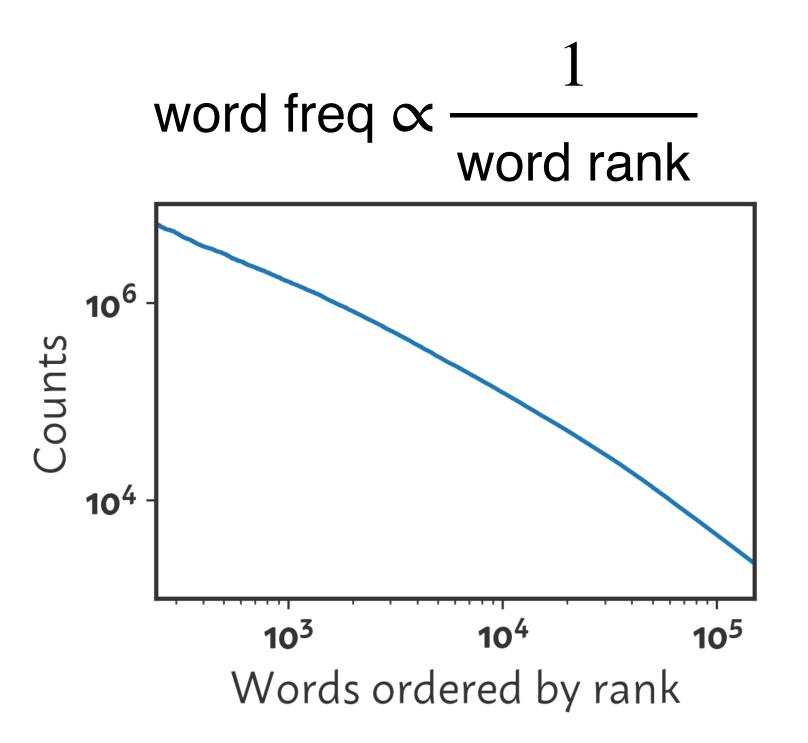


V = set of all words in the English language

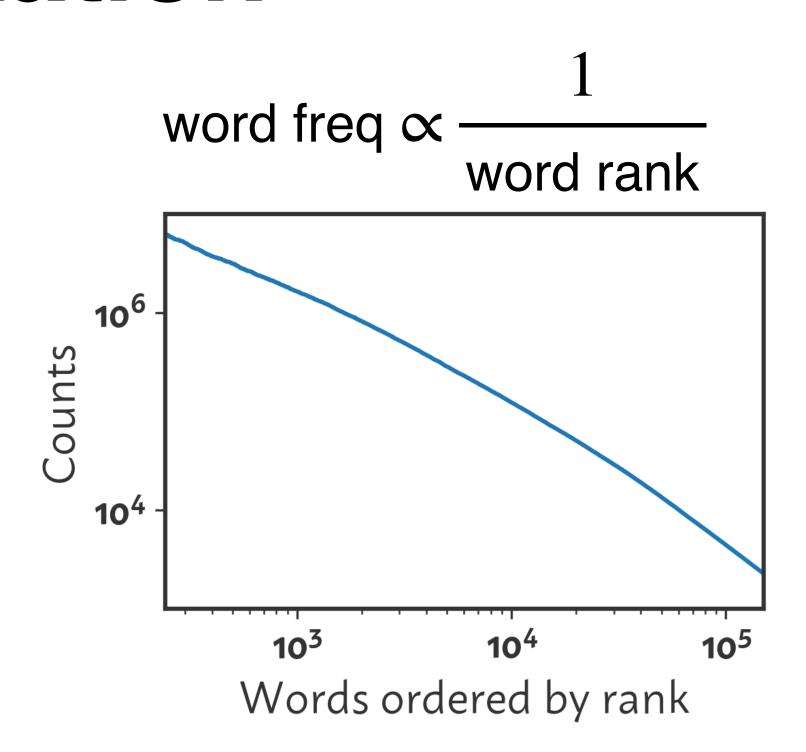


- ullet |V| can be quite large
 - Webster's English dictionary has ~470,000 words!

- ullet |V| can be quite large
 - Webster's English dictionary has ~470,000 words!
- Long tail of infrequent words
 - Zipf's law: word freq. is inversely prop. to rank

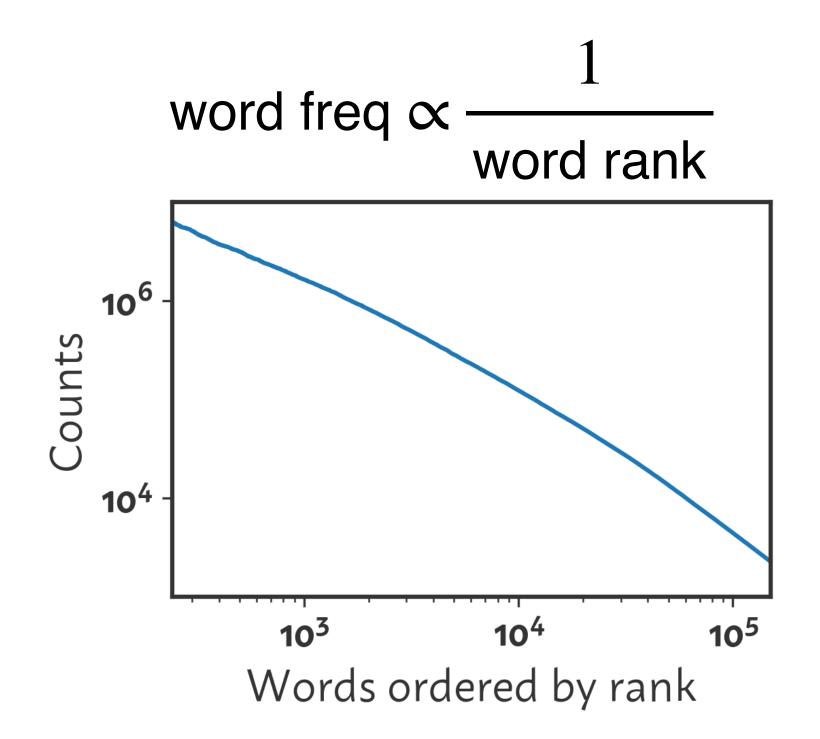


- ullet |V| can be quite large
 - Webster's English dictionary has ~470,000 words!
- Long tail of infrequent words
 - Zipf's law: word freq. is inversely prop. to rank
- Language is changing all the time
 - 690 new words <u>added in Sep 2023</u>: "rizz," "goated," "bussin'," "mid"



X Cons

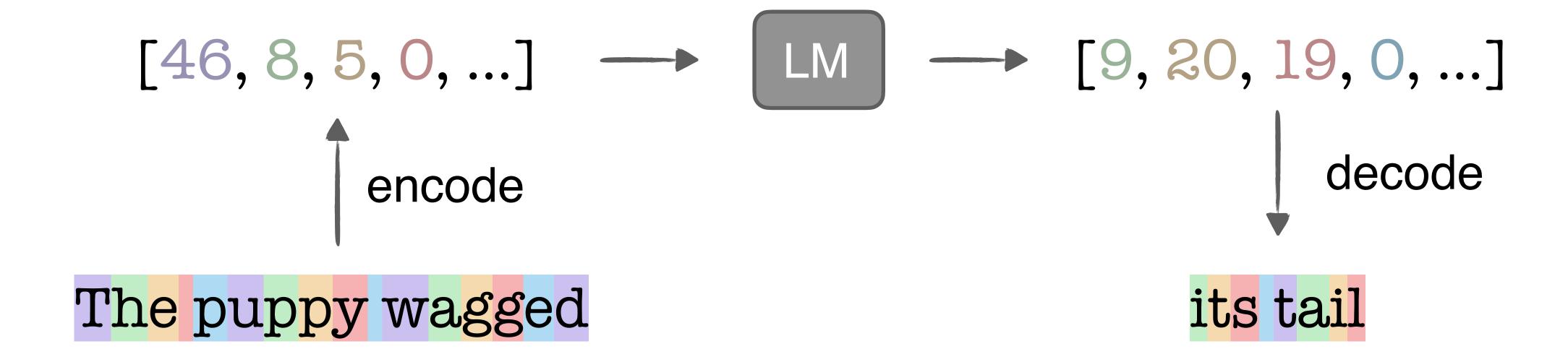
- \bullet |V| can be quite large
 - Webster's English dictionary has ~470,000 words!
- Long tail of infrequent words
 - Zipf's law: word freq. is inversely prop. to rank
- Language is changing all the time
 - 690 new words added in Sep 2023: "rizz," "goated," "bussin'," "mid"
- Still need a way to deal with unknown words



What does "breakfastish" mean?

Breakfastish" is an informal and playful term that means "resembling or characteristic of breakfast." It's used to describe something that has qualities typically associated with breakfast, such as food items, timing, or atmosphere.

$$V = \{a, b, c, \dots, z, A, B, C, \dots, Z\}$$
 (plus spaces + punctuation?)



Small vocabulary size

- Small vocabulary size
- Complete coverage of input

- Small vocabulary size
- Complete coverage of input
- Direct observation of spelling

- Pros
- Small vocabulary size
- Complete coverage of input
- Direct observation of spelling

Super long sequences

- Pros
- Small vocabulary size
- Complete coverage of input
- Direct observation of spelling

- **X** Cons
- Super long sequences
- Difficult to learn over

How can we combine the <u>high coverage</u> of character-level representation with the <u>efficiency</u> of word-level representation?

How can we combine the <u>high coverage</u> of character-level representation with the <u>efficiency</u> of word-level representation?

Tokens are **subwords**, i.e., *parts* of words

How can we combine the <u>high coverage</u> of character-level representation with the <u>efficiency</u> of word-level representation?

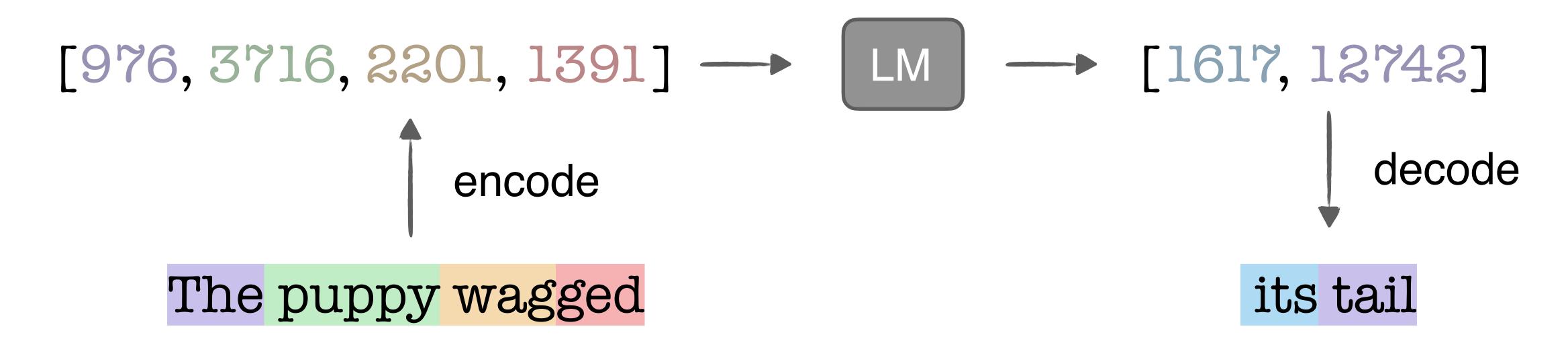
Tokens are **subwords**, i.e., *parts* of words

Instead of defining the vocabulary a-priori, use *data* to tell us what our vocabulary should be

How can we combine the <u>high coverage</u> of character-level representation with the <u>efficiency</u> of word-level representation?

Tokens are **subwords**, i.e., *parts* of words

Instead of defining the vocabulary a-priori, use *data* to tell us what our vocabulary should be



BPE: Byte Pair Encoding

Universal method today for learning subword tokenizers

Intuition: build the vocabulary bottom-up by repeatedly merging common token sequences into new tokens

Introduced by <u>Sennrich et al., 2016</u> & popularized by <u>GPT-2</u> (2019)

Required:

Training data D

Desired vocab size N

Algorithm:

- 1. Pretokenize D by splitting on whitespace
- 2. Initialize V as characters in D
- 3. Convert D into sequence of tokens (i.e., characters)
- 4. While |V| < N:
 - a. Get counts of all bigrams (v_i, v_j) in D
 - b. Merge most frequent pair into new token $v_n = v_i v_j$ where n = |V| + 1
 - c. Replace all instances of $v_i v_j$ in D with v_n

Given: Training data D

tweetle_beetles_battle

1. Pretokenize D by splitting on whitespace

tweetle

_beetles

_battle

1. Pretokenize D by splitting on whitespace

tweetle

_beetles

_battle

2. Initialize V as characters in D

tweetle

_beetles

_battle

3. Convert D into sequence of tokens (i.e., characters)

```
tweetle
beetles
beattle
```

4a. Get counts of all bigrams (v_i, v_j) in D

```
tweetle
_beetles
_battle
```

4a. Get counts of all bigrams (v_i, v_j) in D

```
tweetle tw 1
_beetles
_battle
```

tweetle	tw	1
_beetles	we	1
_battle	ee	1

```
tweetle tw 1
_beetles we 1
_battle ee 1
```

```
tweetle tw 1
_beetles we 1
_battle ee 1
et 1
tl 1
```

```
tweetle tw 1
_beetles we 1
_battle ee 1
et 1
tl 1
le 1
```

```
tweetle tw 1 _b 1
_beetles we 1
_battle ee 1
et 1
tl 1
le 1
```

```
tweetle tw 1 _b 1
_beetles we 1 be 1
_battle ee 1
et 1
tl 1
le 1
```

```
tweetle tw 1 _b 1
_beetles we 1 be 1
_battle ee 2
et 1
tl 1
le 1
```

```
tweetle tw 1 _b 1
_beetles we 1 be 1
_battle ee 2
et 2
tl 1
le 1
```

```
tweetle tw 1 _b 1
_beetles we 1 be 1
_battle ee 2
et 2
tl 2
le 1
```

```
tweetle tw 1 _b 1
_beetles we 1 be 1
_battle ee 2
et 2
tl 2
le 2
```

```
tweetle tw 1 _b 1
_beetles we 1 be 1
_battle ee 2 es 1
et 2
le 2
```

```
tweetle tw 1 _b 2
_beetles we 1 be 1
_battle ee 2 es 1
et 2
le 2
```

tweetle	tw	1	_ b	2
_beetles _battle	we	1	be	1
	ee	2	e s	1
	et	2	ba	1
	t 1	2		
	1e	2		

tweetle	tw	1	_ b	2
_beetles	we	1	be	1
_battle	ee	2	e s	1
	et	2	ba	1
	t 1	2	at	1
	1e	2		

tweetle	tw	1	_ b	2
_beetles	we	1	be	1
_battle	ee	2	e s	1
	et	2	ba	1
	t 1	2	at	1
	1e	2	tt	1

tweetle	tw	1	_ b	2
_beetles	we	1	be	1
_battle	ee	2	e s	1
	et	2	ba	1
	t 1	3	at	1
	1e	2	tt	1

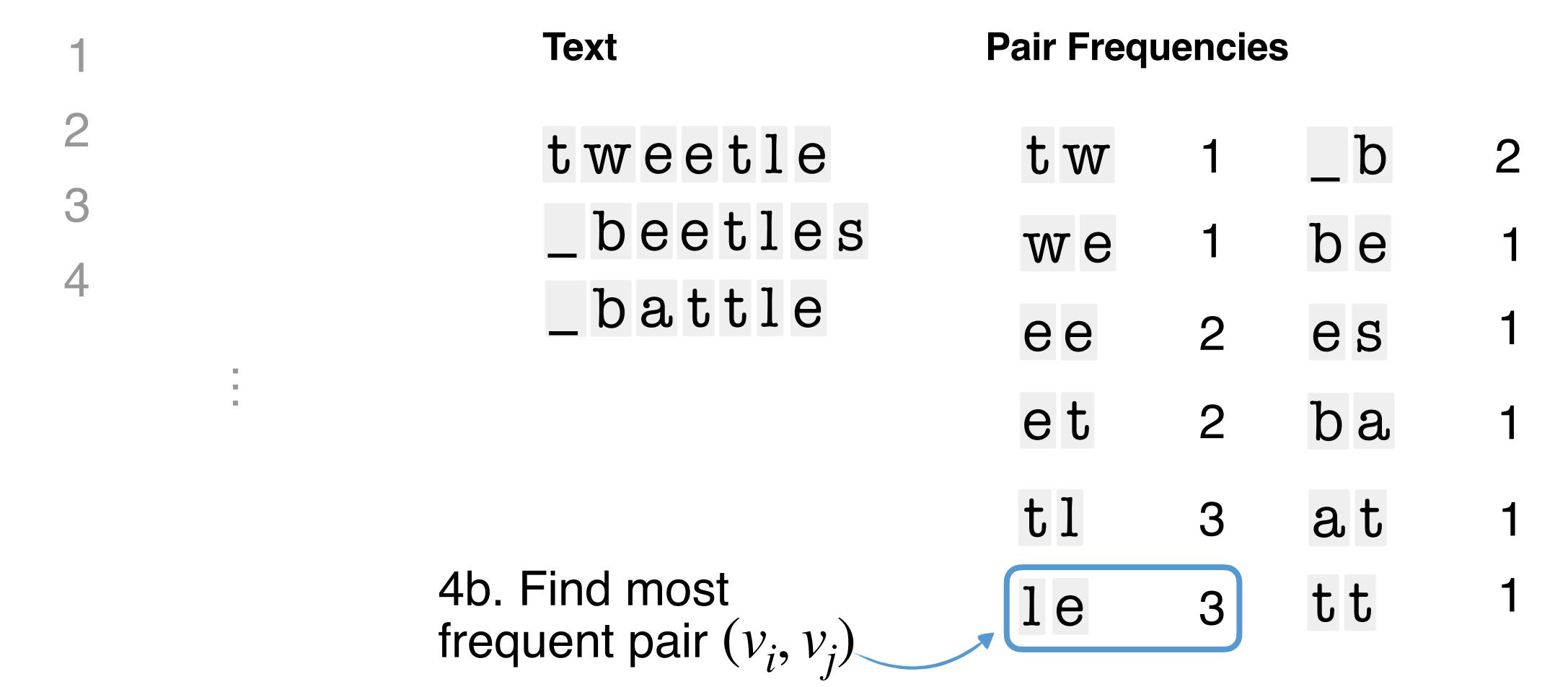
tweetle	tw	1	_ b	2
_beetles	we	1	be	1
_battle	ee	2	es	1
	et	2	ba	1
	t 1	3	at	1
	1e	3	tt	1

Merge List

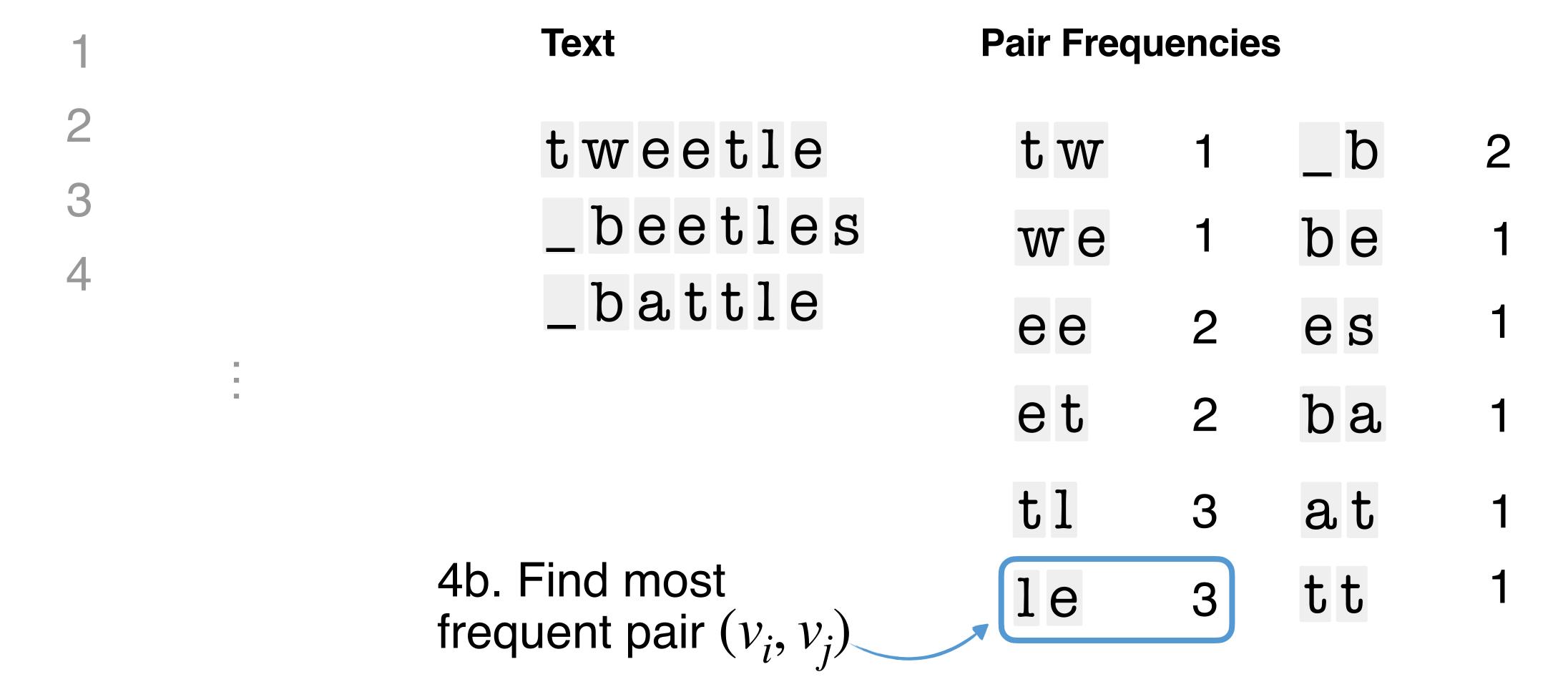
Pair Frequencies Text tweetle tw 3 _beetles be we _battle ее e s e t ba t1 at 3

3

Merge List



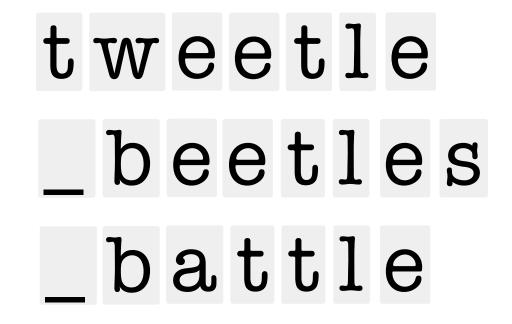
Merge List



Merge List

```
1 le
2
3 add to merge list
4
```

Text

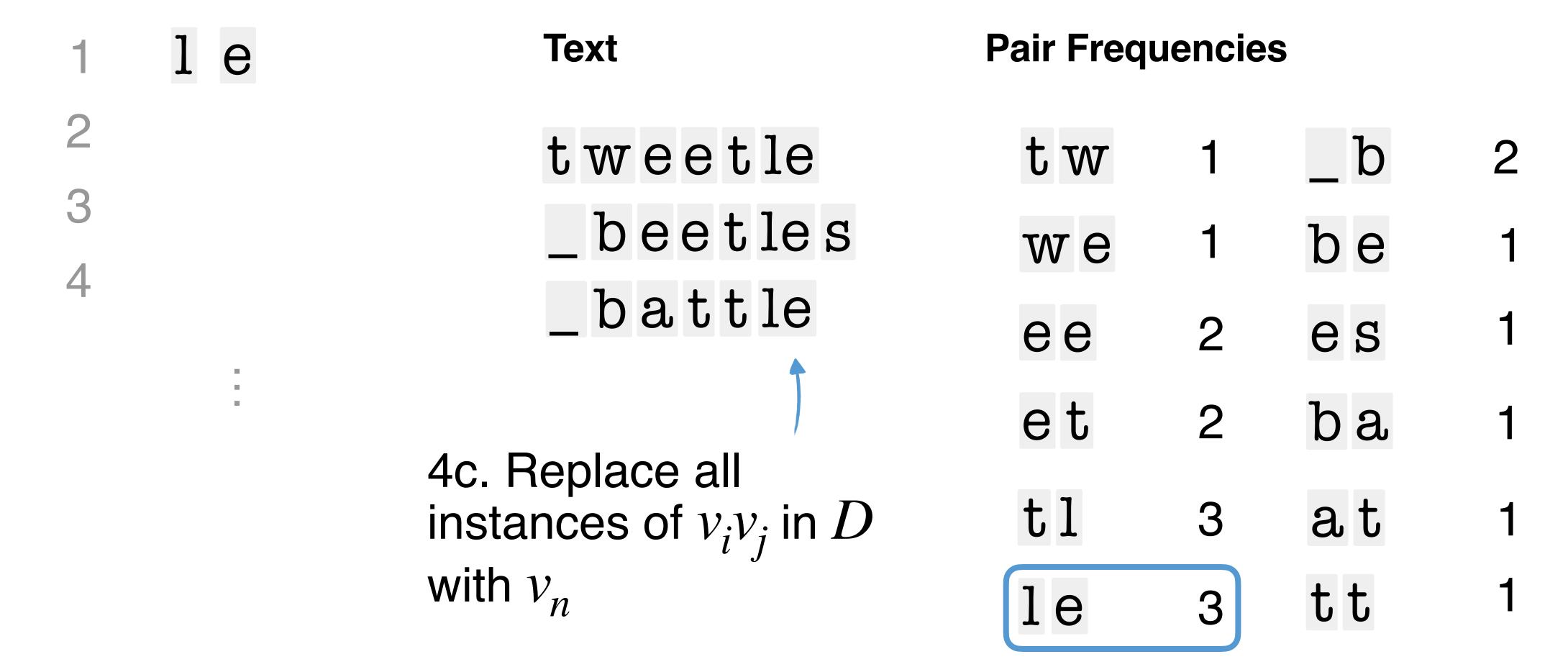


4b. Find most frequent pair (v_i, v_j) 1e 3

Pair Frequencies

tw	1	_ b	2
we	1	be	1
ee	2	e s	1
et	2	ba	1
t 1	3	at	1
1e	3	tt	1

Merge List

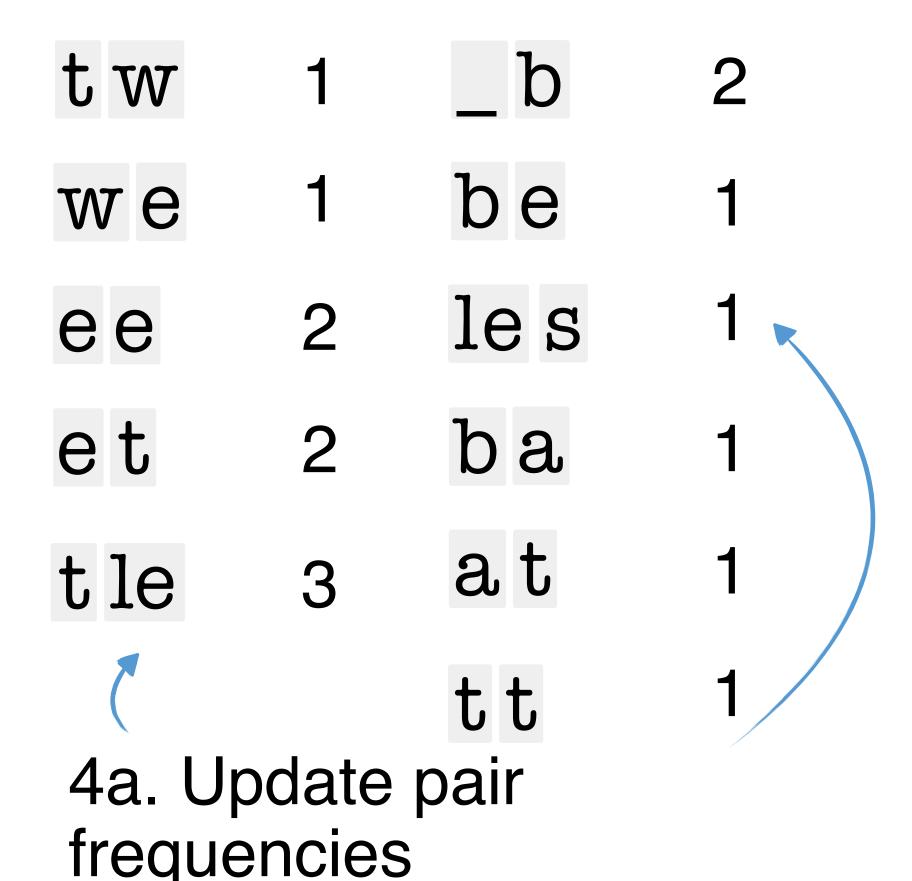


Merge List

1234

Text

Pair Frequencies



Merge List

Text

tweetle
_beetles
_battle

Pair Frequencies

tw	1	_ b	2
we	1	be	1
ee	2	le s	1
et	2	ba	1
t le	3	at	1
		t.t.	1

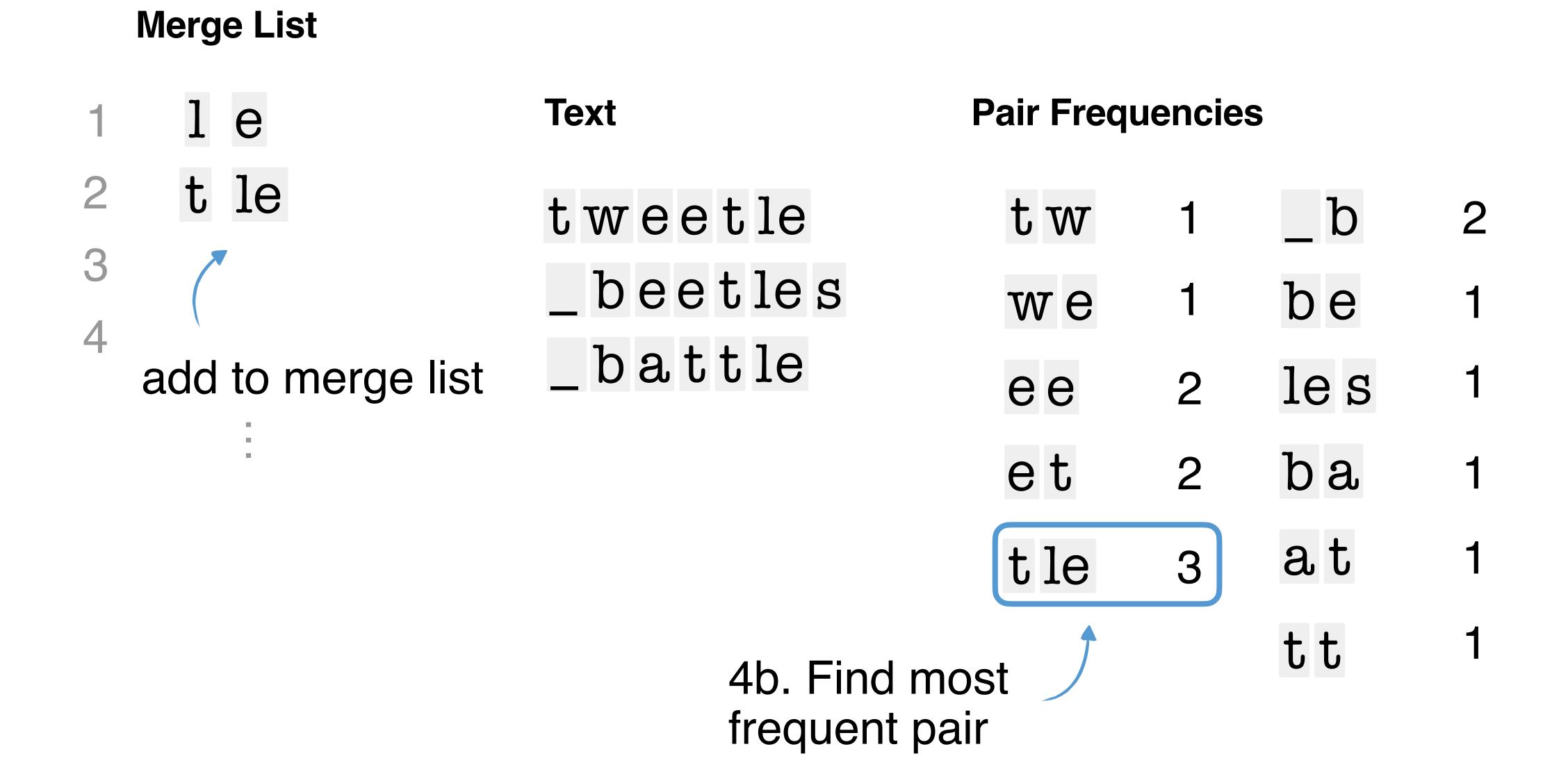
Merge List

Pair Frequencies 1 e **Text** tweetle tw 3 _beetles be we _battle ее le s e t ba at tle 3 4b. Find most frequent pair

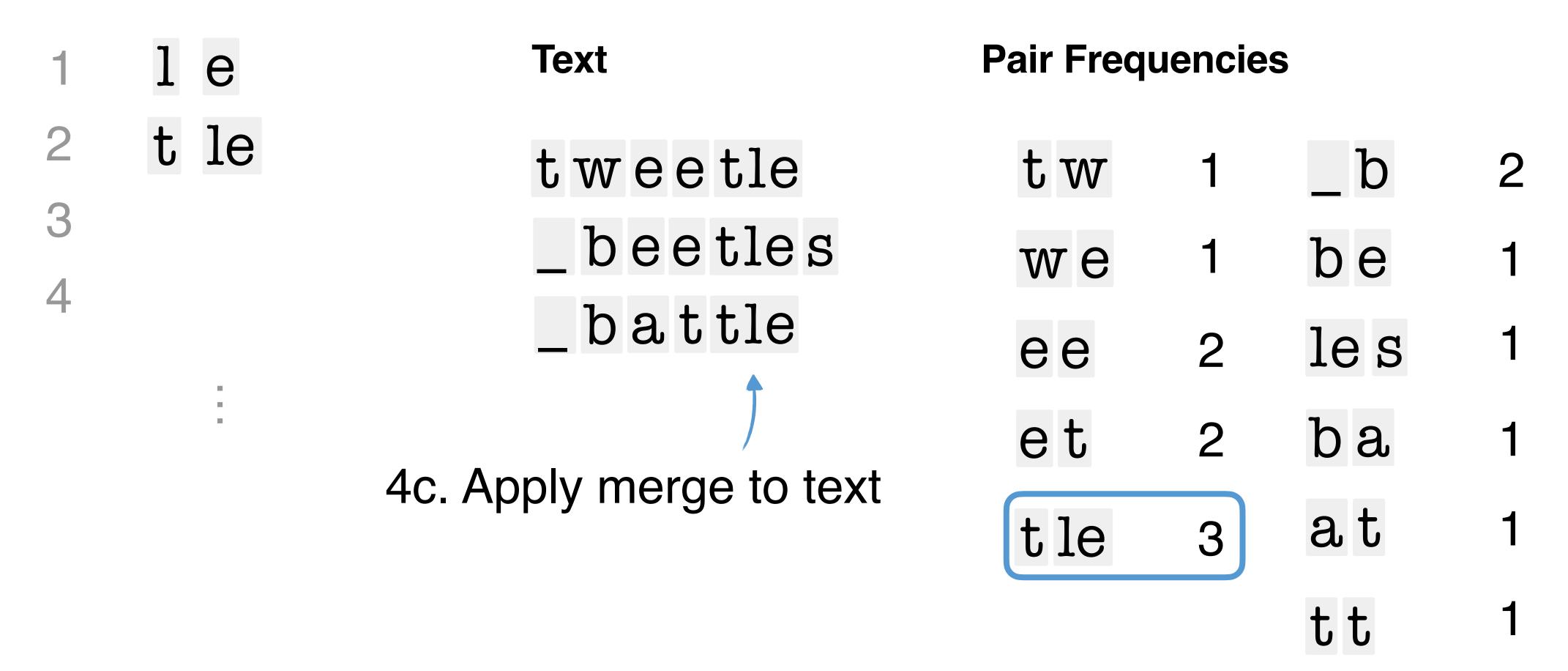
Merge List

Pair Frequencies 1 e **Text** tweetle tw 3 _beetles be we _battle ее le s e t ba at tle 3 4b. Find most

frequent pair



Merge List



Merge List

1 l e

2 t le

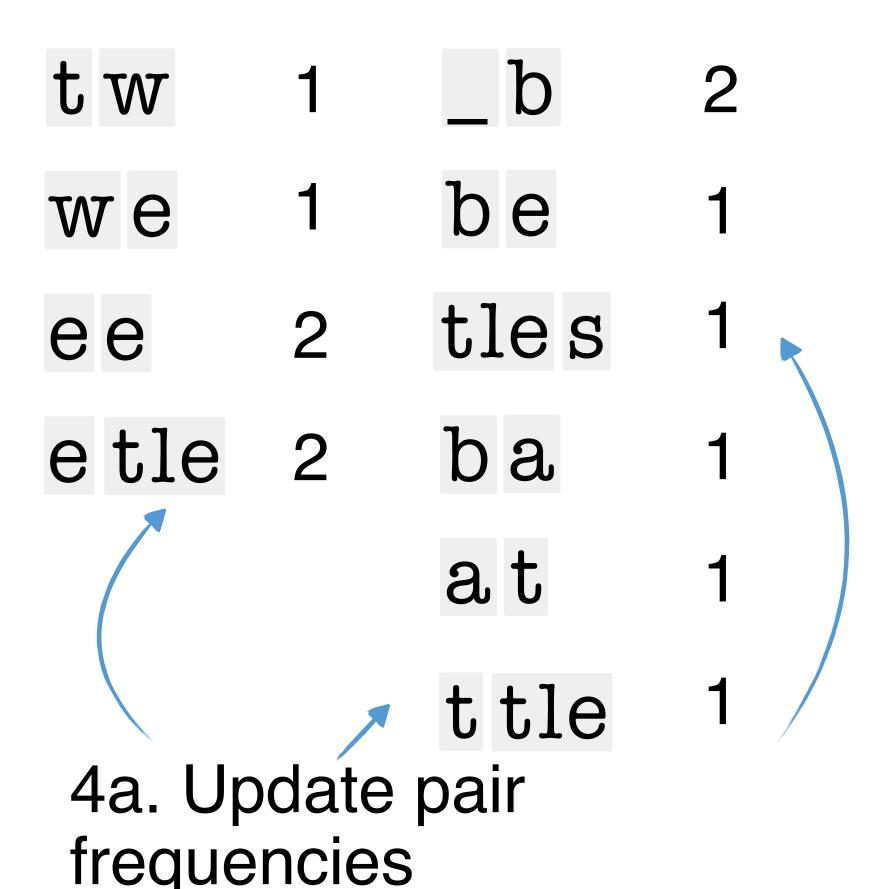
3

4

Text

tweetle
_betles
_battle

Pair Frequencies



Merge List

- 1 l e
- 2 t le
- 3
- 4

- 3

Text

tweetle
_betles
_battle

Pair Frequencies

 tw
 1
 _b
 2

 we
 1
 be
 1

 ee
 2
 tles
 1

e tle 2 ba

at 1

t tle

Merge List

1 l e

2 t le

3

4

.

Text

tweetle
_beetles
_battle

Pair Frequencies

Merge List

1 l e

2 t le

3

4

-

Text

tweetle
beetles
theta

Pair Frequencies

tw be we ее tles ba e tle 2 at ttle

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4

Text

tweetle
beetles
betles
the

Pair Frequencies

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4

.

Text

tweetle
betles
betles
the

Pair Frequencies

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4

Text

tweetle
betles
betles
the

Pair Frequencies

t w 1 _ b 2

we 1 be

e etle 2 etle s 1

ba 1

at

t tle

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4

Text

tweetle
betles
betles
the

Pair Frequencies

tw 1 _ b 2

we 1 be

e etle 2 etle s 1

ba 1

a t

t tle

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4

Text

tweetle
beetles

_battle

Pair Frequencies

t w 1 _ b 2

we 1 be

e etle 2 etle s 1

ba 1

at

t tle

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4

Text

tweetle
betles
betles
the

Pair Frequencies

 tw
 1
 _b
 2

 we
 1
 be
 1

 eetle 2
 etles
 1

 ba
 1

 at
 1

ttle

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4 e etle

Text

tweetle

_beetles

_battle

Pair Frequencies

t w 1 _ b 2

we 1 be

e etle 2 etle s 1

ba 1

at

t tle

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4 e etle

-

Text

t w eetle

_beetles

_battle

Pair Frequencies

t w 1 _ b 2

we 1 be

e etle 2 etle s 1

ba 1

at 1

t tle

Merge List

- 1 le
- 2 t le
- 3 e tle
- 4 e etle

-

Text

t w eetle

_beetles

_battle

Pair Frequencies

 \dots until we reach the desired vocabulary size, |V|=N

To tokenize new text at test time, we split it into the characters and apply merge rules in order.

Merge List

- 1 l e
- 2 t le
- 3 e tle
- 4 e etle

:

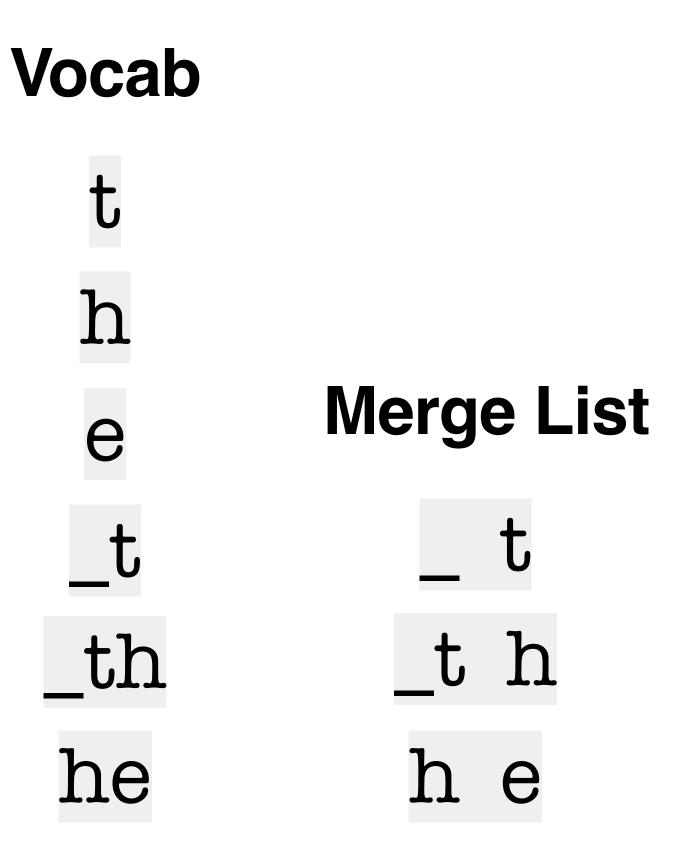
To tokenize new text at test time, we split it into the characters and apply merge rules in order.

```
Merge List

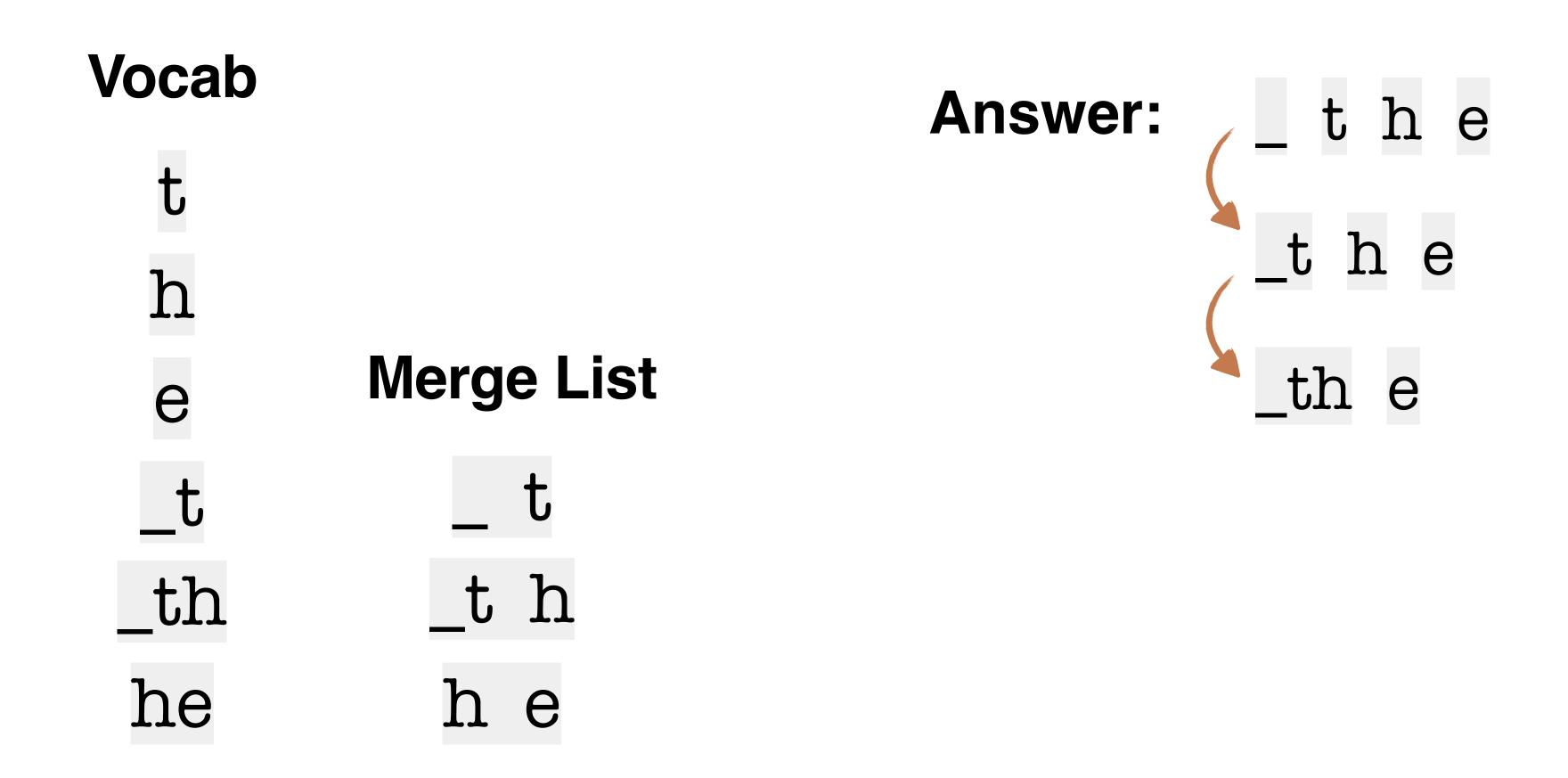
1 le
2 t le
3 e tle
4 e etle

wattle
wattle
wattle
wattle
```

Given this BPE tokenizer, how would _the be tokenized?



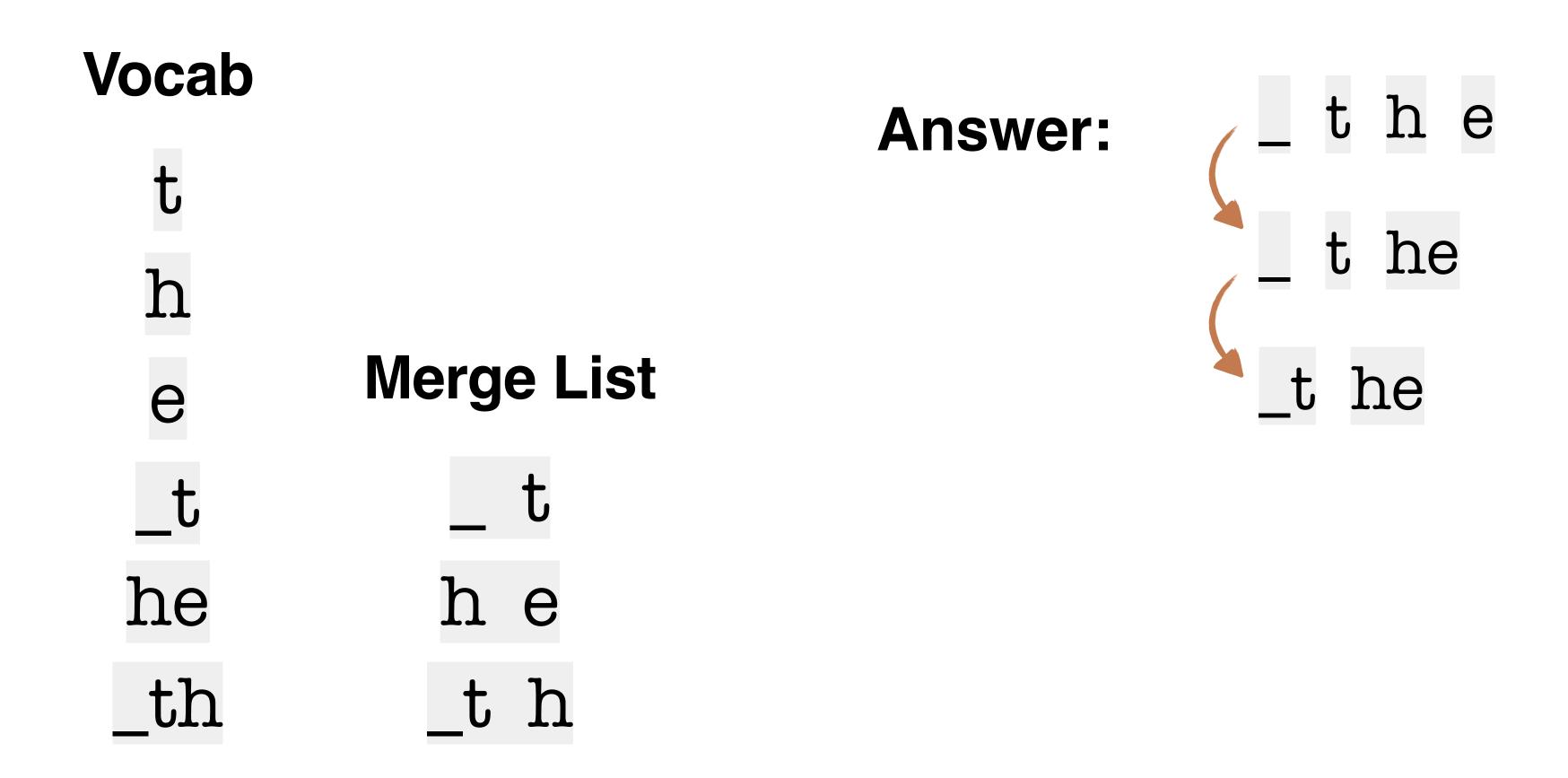
Given this BPE tokenizer, how would _the be tokenized?



Given this BPE tokenizer, how would _the be tokenized?

Vocab Merge List е

Given this BPE tokenizer, how would _the be tokenized?



ChatGPT's tokenizer

Tokenizers are one of the core components of the NLP pipeline. They serve one purpose: to translate text into data that can be processed by the model. Models can only process numbers, so tokenizers need to convert our text inputs to numerical data. In this section, we'll explore exactly what happens in the tokenization pipeline.

https://platform.openai.com/tokenizer

Tokenizers are one of the core components of the NLP pipeline. They serve one purpose: to translate text into data that can be processed by the model. Models can only process numbers , so tokenizers need to convert our text inputs to numerical data. In this section, we'll explore exactly what happens in the tokenization pipeline.

Everything can be represented with the vocabulary

Everything can be represented with the vocabulary

Some shared representations

wagged

Everything can be represented with the vocabulary

Some shared representations

wagged

No association between related words

$$Run \neq run \neq RUN$$

Everything can be represented with the vocabulary

Some shared representations

wagged

No association between related words

Run
$$\neq$$
 run \neq RUN

Hello \neq Hello

Learn the good, bad, & ugly in data

GPT-2 tokens¹: _RandomRedditor, _SolidGoldMagikarp, PsyNetMessage

Everything can be represented with the vocabulary

Some shared representations

wagged

No association between related words

Run
$$\neq$$
 run \neq RUN

Hello \neq Hello

Learn the good, bad, & ugly in data

GPT-2 tokens¹: _RandomRedditor, _SolidGoldMagikarp, PsyNetMessage

No direct observation of spelling

Everything can be represented with the vocabulary

Some shared representations

wagged

No association between related words

Run
$$\neq$$
 run \neq RUN

Hello \neq Hello

Learn the good, bad, & ugly in data

```
GPT-2 tokens¹: _RandomRedditor, _SolidGoldMagikarp, PsyNetMessage
```

No direct observation of spelling

"Intermediate" tokens can be useless entucky token is completely subsumed

What could we do differently?

Instead of merging spaces into the beginning of words, use special "continue word" character

```
With whitespace: [_Token, ization, _is, _cool]
```

W/o whitespace: [Token, ##ization, is, cool]

Instead of merging spaces into the beginning of words, use special "continue word" character

```
With whitespace: [_Token, ization, _is, _cool]
```

W/o whitespace: [Token, ##ization, is, cool]

X Cons

Instead of merging spaces into the beginning of words, use special "continue word" character

With whitespace: [_Token, ization, _is, _cool]

W/o whitespace: [Token, ##ization, is, cool]

X Cons

Loses whitespace information (especially problematic for code!)

Originally, we presented BPE as having characters as the smallest unit

Originally, we presented BPE as having characters as the smallest unit But there are *many* characters if you want to support...

- Character-based languages (e.g., ישיא 교学산한테以米)
- Non-alphanumeric characters (e.g., ••••••)

Originally, we presented BPE as having characters as the smallest unit But there are *many* characters if you want to support...

- Character-based languages (e.g., ש੍ਕ学ひ한กUЖ)
- Non-alphanumeric characters (e.g., ••••••)

Instead, use UTF-8 to map all characters in Unicode to byte strings (of 1-4 bytes) Initialize base vocab as the set of 256 bytes, instead of the English characters

Variants: pretokenization decisions

Recall: pretokenization sets limits on what boundaries our tokens can cross

How should we pretokenize...

Digits? Consider: 10 vs. 1000000 vs. 5493747

Consecutive spaces? Consider:

```
loop {
    // Stop as soon as we have a big enough vocabulary
    if word_to_id.len() >= self.vocab_size {
        break;
    }
    let mut top: Merge = queue.pop().unwrap();
```

Punctuation? Consider: yay!, !=, get., .get

Newlines? Consider: ;\n

Whitespace? Consider: thank you, New York