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Tokenization :(

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

* Why can't LLM spell words? Tokenization.

* Why can't LLM do super simple string proceIssing tasks like reversing a string? Tokenization.

* Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

* Why is LLM bad at simple arithmetic? Tokenization.

* Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
 Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
 What is this weird warning | get about a "trailing whitespace"? Tokenization.

« Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.

 Why should | prefer to use YAML over JSON with LLMs? Tokenization.

* Why is LLM not actually end-to-end language modeling? Tokenization.

* What is the real root of suffering? Tokenization. A
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There are no days without tokenization accidents. There are only:
- days when you know about them
- days when you do not
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What is tokenization?
Word-level and character-level tokenizers
Subword-level tokenizers

BPE: Byte Pair Encoding
Variations on BPE



What is tokenization?

Token = a "word” unit with its own embedding representation

A tokenizer translates between text and a sequence of tokens that a
language model (LM) learns representations over

The vocabulary V is the set of known tokens

976, 5716,2201] —» ({0 — [1617, 12742]

T encode l decode

The puppy wagsged its tail
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What is tokenization?

Token = a "word” unit with its own embedding representation

A tokenizer translates between text and a sequence of tokens that a
language model (LM) learns representations over

The vocabulary V is the set of known tokens

15388,2201] —» (U] —  [10955]

T encode l decode

The puppy wagsged its tail



Word-level tokenization

V = set of all words in the English language

976, 5716,2201] — [l —» [1617, 12742]

T encode l decode

The puppy wagsged its tail
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Word-level tokenization

X Cons


https://www.merriam-webster.com/wordplay/new-words-in-the-dictionary-september-2023

Word-level tokenization

X Cons
* | V]| can be quite large

* Webster’s English dictionary has ~470,000
words!


https://www.merriam-webster.com/wordplay/new-words-in-the-dictionary-september-2023

Word-level tokenization

1
word freq
X Cons X word rank
* |V| can be quite large
106_
* Webster’s English dictionary has ~470,000 2
words! 3
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* Long tail of infrequent words 10%-
* Zipf’s law: word freq. is inversely prop. to rank 03 10t 108

Words ordered by rank
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Word-level tokenization

1
X Cons word freq o« word rank
* | V] can be quite large 6
* Webster’s English dictionary has ~470,000 v .
words! §
* Long tail of infrequent words 1ot
* Zipf’s law: word freq. is inversely prop. to rank T3 10t 108

* Language is changing all the time Words ordered by rank

* 690 new words added in Sep 2023: “rizz,”

“‘goated,” “bussin’,” “‘mid”



https://www.merriam-webster.com/wordplay/new-words-in-the-dictionary-september-2023

Word-level tokenization

|
word freq cx
X Cons ; word rank
* | V]| can be quite large 6
10
* Webster’s English dictionary has ~470,000 e
words! >
@,
* Long tail of infrequent words 10"
* Zipf’s law: word freq. is inversely prop. to rank s 10t 108
* Language is changing all the time Words ordered by rank
* 690 new words added in Sep 2023: “rizz,” e
“‘goated,” “bussin’,” “‘mid” |
° Stl” need d Way to deal Wlth UnknOWH @  "Breakfastish" is an informal and playful term that means

"resembling or characteristic of breakfast." It's used to
describe something that has qualities typically associated
with breakfast, such as food items, timing, or atmosphere. .

words


https://www.merriam-webster.com/wordplay/new-words-in-the-dictionary-september-2023

Character-level tokenization
V=lab,c,...,,A,B,C,...,7Z}

(plus spaces + punctuation?)

46, 6,5,0,...] — D—-»[, 19,0, ...]

T encode l decode

The puppy wagged its tail



Character-level tokenization
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Character-level tokenization

Pros
* Small vocabulary size
* Complete coverage of input
* Direct observation of spelling

X Cons
* Super long sequences
®* Difficult to learn over

1



Subword tokenization



Subword tokenization

How can we combine the high coverage of character-level
representation with the efficiency of word-level representation?
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Subword tokenization

How can we combine the high coverage of character-level
representation with the efficiency of word-level representation?

Tokens are subwords, i.e., parts of words

Instead of defining the vocabulary a-priori, use data to tell us
what our vocabulary should be

3716, 2201, 1301] — [ —» [1617, 12742]

T encode l decode

The puppy wagged its tail
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BPE: Byte Pair Encoding

Universal method today for learning subword tokenizers

Intuition: build the vocabulary bottom-up by repeatedly merging
common token sequences into new tokens

Introduced by Sennrich et al., 2016 & popularized by GPT-2
(2019)

13


https://aclanthology.org/P16-1162/
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

BPE Algorithm

Required: Algorithm:
Training data D 1. Pretokenize D by splitting on whitespace

Desired vocab size N 2. Initialize V as characters in D

3. Convert D into sequence of tokens (i.e.,
characters)

4. While |V| < N:
a. Get counts of all bigrams (v, v;) in D

b. Merge most frequent pair into new token

v, = V;v;where n = [V] + 1

c. Replace all instances of v;y; in D with v,

14



BPE Algorithm

Given: Training data D

tweetle beetles battle

15



BPE Algorithm

1. Pretokenize D by splitting on
whitespace

tweetle
- beetles
~ pattle
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BPE Algorithm

1. Pretokenize D by splitting on
whitespace

tweetle
- beetles
~ pattle



BPE Algorithm

2. Initialize V as characters in
D

tweetle
- beetles
~ pattle



BPE Algorithm

3. Convert D into sequence of tokens (i.e.,
characters)

tweetle
beetles

~pbattle

19



BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in
D

tweetle
~beetles
~pbattle
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4a. Get counts of all bigrams (v;, v;) in
D
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_beetles we 1
~pbattle
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in
D

tweetle tw 1
_beetles we 1
_battle e 5
et 2
t1 2

le 1



4a. Get counts of all bigrams (v;, v;) in

D

BPE Algorithm

tweetle
-~ beet|lels
~pbattle

tw
W €
ee
et

t1
le

1
1

D DD DN
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in
D

tweetle tw 1 _D
_beetles we 1 Dbe
_battle e > es

et 2

t1 2

le 2
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in
D

tweetle tw 1 _D
_beetles we 1 Dbe
_battle e > es

et 2

t1 2

le 2
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in
D

tweetle tw 1 _D
_beetles we 1 Dbe
_battle e > es
et 2 Dba
t1 2
le 2
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in

D
tweetle tw
_beetles W e
_batitle e
et
t1

le

1
1

D DD DN

b e
es
b a

at
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in

D
tweetle tw
_beetles W e
_bajttle e
et
t1

le

1
1

D DD DN

b e
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b a

at
t L
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in

D
tweetle tw
_beetles W e
_battlle e
et
t1

le

1
1

ND W DN DN

b e
es
b a

at
t L
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BPE Algorithm

4a. Get counts of all bigrams (v;, v;) in

D
tweetle tw
_beetles W e
_battle e
et
t1

le

1
1

LW W N DN

b e
es
b a

at
t L
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Merge List

BPE Algorithm

Text Pair Frequencies
tweetle tw 1
_beetles we 1
_battle o 5
et 2
t1 3
le 3

b e
es
b a

at
t L
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BPE Algorithm

Text Pair Frequencies
tweetle tw 1
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BPE Algorithm

Merge List
1 e Text
tweetle
add to merge list beetles
_battle
4b. Find most

frequent pair (v;, v;)

Pair Frequencies

tw
W €
ee
et

t1
le

1
1

LW W N DN

b e
es
b a

at
t L
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Merge List

l e

BPE Algorithm

Text

tweetle
~beetles
~pbattle

4c. Replace all
instances of v,v; in D

| J
with v,

Pair Frequencies

tw
W €
ee
et

t1
le

1
1

LW W N DN

b e
es
b a

at
t L
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Merge List

l e

BPE Algorithm

Text Pair Frequencies
tweetle tw 1 _D
_beetles we 1 Dbe
_Dbattle ee 2 les
et 2 Dba

tle 3 at

tt

4a. Update pair
frequencies
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BPE Algorithm

Text Pair Frequencies
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Merge List

l e
t le

add to merge list

BPE Algorithm

Text Pair Frequencies
tweetle tw 1
_beetles we 1
_battle o e 5
et 2
tle 3
4b. Find most

frequent pair

be
le s
ba
at

Ct
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BPE Algorithm

Merge List

] e Text Pair Frequencies

t le tweetle tw 1

_beetles we 1

_battle T 5

et 2

4c. Apply merge to text
tle 3

be
le s
ba
at

Ct



Merge List

l e
t le

BPE Algorithm

Text

tweetle
~beetles
~battle

Pair Frequencies

tw 1 D
we 1 Dbe
ee 2 tles
etle 2 Dba
at

t tle

4a. Update pair
frequencies
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Merge List

l e
t le

BPE Algorithm

Text Pair Frequencies
tweetle tw 1 D
_beetles we 1 Dbe
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BPE Algorithm
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BPE Algorithm
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Merge List
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BPE Algorithm
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Merge List
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BPE Algorithm

Text Pair Frequencies
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Merge List

l e
t le
e tle

BPE Algorithm

Text Pair Frequencies
t weetle tw 1
_beetles we 1
_battle cetle 2

_ b 2
be 1
etles 1
ba 1
at 1

ttle 1
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Merge List
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BPE Algorithm

Text Pair Frequencies
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Merge List

l e
t le
e tle

BPE Algorithm

Text Pair Frequencies
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Merge List

l e
t le
e tle

BPE Algorithm

Text Pair Frequencies
t weetle tw 1
_beetles we 1
~battle cetle 2

_ b 2
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Merge List

l e

t le

e tle
e etle

BPE Algorithm

Text

t weetle
~beetles
- battle

Pair Frequencies

tw 1
W e 1
eetle 2

_ Db 2
be 1
etles 1
ba 1
at 1

ttle 1
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Merge List

l e

t le

e tle
e etle

BPE Algorithm

Text

t weetle
-~ beetles
- battle

Pair Frequencies

tw 1
W e 1
eetle 2

_ Db 2
be 1
etles 1
ba 1
at 1
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BPE Algorithm

Merge List
]_ e Text
t le t w eetle
e tle ~ beetles
e etle “battle

Pair Frequencies

tw 1
W e 1

... until we reach the desired vocabulary size, |V| = N

_ Db 2
be 1
eetles
ba 1
at 1
ttle 1
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BPE Algorithm

To tokenize new text at test time, we split it into the characters and apply
merge rules in order.

Merge List

l e

t le

e tle
e etle

55



BPE Algorithm

To tokenize new text at test time, we split it into the characters and apply
merge rules in order.

Merge List

wattle
le wattle
t le wat tle
e tle

e etle
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BPE: Examples

Given this BPE tokenizer, how would the be tokenized?

Vocab
¥
h
e Merge List
& _ 0
th t h

56



BPE: Examples

Given this BPE tokenizer, how would the be tokenized?

Vocab
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b _ G
th t h
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BPE: Examples

Given this BPE tokenizer, how would the be tokenized?

Vocab

Answer: _the
t
H _t he
e Merge List t he
T _ T
he h e

th _t h

Y



ChatGPT’s tokenizer

Tokenizers are one of the core components of the NLP
pipeline. They serve one purpose: to translate text
into data that can be processed by the model. Models
can only process numbers, so tokenizers need to
convert our text i1nputs to numerical data. In this
section, we’ll explore exactly what happens 1in the
tokenization pipeline.

https://platform.openai.com/tokenizer

Tokenizers are one of the core

components of the NLP pipeline.
They serve one purpose: to
translate text 1into data that
can be processed by the model.
Models can only process numbers
so tokenizers need to convert
our text 1nputs to numerical
data. In this section, we’ll
explore exactly what happens 1n
the tokenization pipeline.
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Subword tokenizers



Subword tokenizers

Pros X Cons


https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

Subword tokenizers

Pros X Cons

Everything can be
represented with the
vocabulary

59
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Subword tokenizers

Pros X Cons

Everything can be
represented with the
vocabulary

Some shared representations
wagged
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Subword tokenizers

Pros X Cons
Everything can be No association between related words
represented W|th the Run # run ;é RUN

vocabular
y _Hello # Hello

Some shared representations
wagged

59
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Subword tokenizers

Pros

Everything can be
represented with the
vocabulary

Some shared representations
wagged

X Cons

No association between related words
Run # run = RUN

_Hello # Hello
Learn the good, bad, & ugly in data

GPT-2 tokens!: RandomRedditor,
_SolidGoldMagikarp, PsyNetMessage
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Subword tokenizers

Pros

Everything can be
represented with the
vocabulary

Some shared representations
wagged

X Cons

No association between related words
Run # run = RUN

_Hello # Hello
Learn the good, bad, & ugly in data

GPT-2 tokens!: RandomRedditor,
_SolidGoldMagikarp, PsyNetMessage

No direct observation of spelling
“Intermediate” tokens can be useless

entucky token is completely subsumed
by _Kentucky

59
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What could we do differently?
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Variant: how to treat whitespace

Instead of merging spaces into the beginning of words, use special
“continue word” character

With whitespace:|_Token, ization, _is, _coo0l]

W/0o whitespace: [Token, ##ization, is, cool]
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Variant: how to treat whitespace

Instead of merging spaces into the beginning of words, use special
“continue word” character

With whitespace:|_Token, ization, _is, _coo0l]

W/0o whitespace: [Token, ##ization, is, cool]

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("openai-gpt")

X Cons

token_ids = tokenizer.encode("Tokenization is cool.")

Loses whitespace information

print(tokenizer.decode(token_ids))
v/ 0.0s

(especially problematic for code!) 571, 2067, 26922, sas, 2508, 230

tokenization 1s cool .

token ids = tokenizer.encode("Tokenization is cool.")
print(token_ids)
print(tokenizer.decode(token_ids))

v/ 0.0s

(571, 2987, 26922, 544, 2548, 239]
tokenization is cool .
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Variant: byte-based



Variant: byte-based

Originally, we presented BPE as having characters as the smallest unit
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Variant: byte-based

Originally, we presented BPE as having characters as the smallest unit
But there are many characters if you want to support...
- Character-based languages (e.g., Ya@=F U8t K)

- Non-alphanumeric characters (e.g., se @ 9® )
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Variant: byte-based

Originally, we presented BPE as having characters as the smallest unit
But there are many characters if you want to support...
- Character-based languages (e.g., Ya@=F U8t K)

- Non-alphanumeric characters (e.g., se @ 9® )

Instead, use UTF-8 to map all characters in Unicode to byte strings (of 1-4 bytes)
Initialize base vocab as the set of 256 bytes, instead of the English characters

Al = [ I
2= - UTEF-8
41 CE1 A9 | ES1AA19E | FO190 1 8E | 84

62



Variants: pretokenization decisions

Recall: pretokenization sets limits on what boundaries our tokens can cross

How should we pretokenize...
Digits? Consider: 10 vs. 1000000 vs. 5493747

Consecutive spaces? Consider: e
Punctuation? Consider: yay!, !=, get., .get
Newlines? Consider: ;\n

Whitespace? Consider: thank you, New York
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